Персона: Свистунов, Андрей Сергеевич
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
Interpolation-Filtering Method for Image Improvement in Digital Holography
2024, Kozlov,A.V., Cheremkhin,P.A., Svistunov,A.S., Rodin,V.G., Starikov,R.S., Evtikhiev,N.N., Козлов, Александр Валерьевич, Черёмхин, Павел Аркадьевич, Свистунов, Андрей Сергеевич, Родин, Владислав Геннадьевич, Стариков, Ростислав Сергеевич, Евтихиев, Николай Николаевич
Digital holography is actively used for the characterization of objects and 3D-scenes, tracking changes in medium parameters, 3D shape reconstruction, detection of micro-object positions, etc. To obtain high-quality images of objects, it is often necessary to register a set of holograms or to select a noise suppression method for specific experimental conditions. In this paper, we propose a method to improve filtering in digital holography. The method requires a single hologram only. It utilizes interpolation upscaling of the reconstructed image size, filtering (e.g., median, BM3D, or NLM), and interpolation to the original image size. The method is validated on computer-generated and experimentally registered digital holograms. Interpolation methods coefficients and filter parameters were analyzed. The quality is improved in comparison with digital image filtering up to 1.4 times in speckle contrast on the registered holograms and up to 17% and 29% in SSIM and NSTD values on the computer-generated holograms. The proposed method is convenient in practice since its realization requires small changes of standard filters, improving the quality of the reconstructed image.
Object image reconstruction: method for reconstructing images from digital off-axis holograms using a generative adversarial network
2024, Kiriy, S. A., Svistunov, A. S., Rymov, D. A., Starikov, R. S., Shifrina, A. V., Cheremkhin, P. A., Кирий, Семен Алексеевич, Свистунов, Андрей Сергеевич, Рымов, Дмитрий Андреевич, Стариков, Ростислав Сергеевич, Шифрина, Анна Владимировна, Черёмхин, Павел Аркадьевич
Generative adversarial neural network for 3D-hologram reconstruction
2024, Kiriy, S. A., Rymov, D. A., Svistunov, A. S., Shifrina, A. V., Starikov, R. S., Cheremkhin, P. A., Кирий, Семен Алексеевич, Рымов, Дмитрий Андреевич, Свистунов, Андрей Сергеевич, Шифрина, Анна Владимировна, Стариков, Ростислав Сергеевич, Черёмхин, Павел Аркадьевич
HoloForkNet: Digital Hologram Reconstruction via Multibranch Neural Network
2023, Svistunov, A. S., Rymov, D. A., Starikov, R. S., Cheremkhin, P. A., Свистунов, Андрей Сергеевич, Рымов, Дмитрий Андреевич, Стариков, Ростислав Сергеевич, Черёмхин, Павел Аркадьевич
Reconstruction of 3D scenes from digital holograms is an important task in different areas of science, such as biology, medicine, ecology, etc. A lot of parameters, such as the object’s shape, number, position, rate and density, can be extracted. However, reconstruction of off-axis and especially inline holograms can be challenging due to the presence of optical noise, zero-order image and twin image. We have used a deep-multibranch neural network model, which we call HoloForkNet, to reconstruct different 2D sections of a 3D scene from a single inline hologram. This paper describes the proposed method and analyzes its performance for different types of objects. Both computer-generated and optically registered digital holograms with resolutions up to 2048 × 2048 pixels were reconstructed. High-quality image reconstruction for scenes consisting of up to eight planes was achieved. The average structural similarity index (SSIM) for 3D test scenes with eight object planes was 0.94. The HoloForkNet can be used to reconstruct 3D scenes consisting of micro- and macro-objects.
Neural-network-based methods in digital and computer-generated holography: a review
2024, Cheremkhin, P. A., Rymov, D. A., Svistunov, A. S., Zlokazov, E. Y., Starikov, R. S., Черёмхин, Павел Аркадьевич, Рымов, Дмитрий Андреевич, Свистунов, Андрей Сергеевич, Злоказов, Евгений Юрьевич, Стариков, Ростислав Сергеевич