Персона: Свистунов, Андрей Сергеевич
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Свистунов
Имя
Андрей Сергеевич
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияТолько метаданныеInterpolation-Filtering Method for Image Improvement in Digital Holography(2024) Kozlov,A.V.; Cheremkhin,P.A.; Svistunov,A.S.; Rodin,V.G.; Starikov,R.S.; Evtikhiev,N.N.; Козлов, Александр Валерьевич; Черёмхин, Павел Аркадьевич; Свистунов, Андрей Сергеевич; Родин, Владислав Геннадьевич; Стариков, Ростислав Сергеевич; Евтихиев, Николай НиколаевичDigital holography is actively used for the characterization of objects and 3D-scenes, tracking changes in medium parameters, 3D shape reconstruction, detection of micro-object positions, etc. To obtain high-quality images of objects, it is often necessary to register a set of holograms or to select a noise suppression method for specific experimental conditions. In this paper, we propose a method to improve filtering in digital holography. The method requires a single hologram only. It utilizes interpolation upscaling of the reconstructed image size, filtering (e.g., median, BM3D, or NLM), and interpolation to the original image size. The method is validated on computer-generated and experimentally registered digital holograms. Interpolation methods coefficients and filter parameters were analyzed. The quality is improved in comparison with digital image filtering up to 1.4 times in speckle contrast on the registered holograms and up to 17% and 29% in SSIM and NSTD values on the computer-generated holograms. The proposed method is convenient in practice since its realization requires small changes of standard filters, improving the quality of the reconstructed image.
- ПубликацияОткрытый доступHoloForkNet: Digital Hologram Reconstruction via Multibranch Neural Network(2023) Svistunov, A. S.; Rymov, D. A.; Starikov, R. S.; Cheremkhin, P. A.; Свистунов, Андрей Сергеевич; Рымов, Дмитрий Андреевич; Стариков, Ростислав Сергеевич; Черёмхин, Павел АркадьевичReconstruction of 3D scenes from digital holograms is an important task in different areas of science, such as biology, medicine, ecology, etc. A lot of parameters, such as the object’s shape, number, position, rate and density, can be extracted. However, reconstruction of off-axis and especially inline holograms can be challenging due to the presence of optical noise, zero-order image and twin image. We have used a deep-multibranch neural network model, which we call HoloForkNet, to reconstruct different 2D sections of a 3D scene from a single inline hologram. This paper describes the proposed method and analyzes its performance for different types of objects. Both computer-generated and optically registered digital holograms with resolutions up to 2048 Г— 2048 pixels were reconstructed. High-quality image reconstruction for scenes consisting of up to eight planes was achieved. The average structural similarity index (SSIM) for 3D test scenes with eight object planes was 0.94. The HoloForkNet can be used to reconstruct 3D scenes consisting of micro- and macro-objects.