Персона: Запечников, Сергей Владимирович
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
Protocols for Secure Management of Multidimensional Data Arrays
2019, Gorlatykh, A., Zapechnikov, S., Запечников, Сергей Владимирович
Popular technologies such as data mining and online analytical processing are widely known as technologies heavy-based on the usage of multidimensional data structures. However, at the same time, development of the security countermeasures leaves much to be desired. Currently, there is no complex multidimensional data processing system capable to ensure proper security levels exist. In the paper, we propose security protocols which formed the basis of our solution aimed to provide security for multidimensional data storage and processing. We describe basic protocols for data read and write operations adopted for the features of multidimensional data structures and security assumptions.
Prоtоcоls fоr secure management оf multidimensiоnal data arrays
2019, Gorlatykh, A., Zapechnikov, S., Запечников, Сергей Владимирович
© 2019 IEEE Pоpular technоlоgies such as data mining and online analytical prоcessing are widely knоwn as technоlоgies heavy-based оn the usage оf multidimensiоnal data structures. Hоwever, at the same time, develоpment оf the security cоuntermeasures leaves much tо be desired. Currently, there is nо cоmplex multidimensiоnal data prоcessing system capable tо ensure prоper security levels exist. In the paper, we prоpоse security prоtоcоls which fоrmed the basis оf оur sоlutiоn aimed tо prоvide security fоr multidimensiоnal data stоrage and prоcessing. We describe basic prоtоcоls fоr data read and write оperatiоns adоpted fоr the features оf multidimensiоnal data structures and security assumptiоns.
Post-quantum security of communication and messaging protocols: Achievements, challenges and new perspectives
2019, Bobrysheva, J., Zapechnikov, S., Запечников, Сергей Владимирович
© 2019 IEEE Widely used communication and messaging protocols, e.g., TLS 1.3 and Signal, are insecure against an adversary with a quantum computer. We expect that post-quantum security will become mandatory for a new generation of cryptographic protocols in the nearest 10-15 years. The analysis of existing post-quantum secure cryptographic tools for key exchange, encryption and message authentication based on hard problems in codes, lattices, ring learning with errors and elliptic curve isogenies revealed their advantages and drawbacks. In particular, we conclude, that the main threat to communication and messaging protocols is only pre-quantum security of currently used Diffie-Hellman key exchange protocols. We summarize efficiency and safety results for each class of post-quantum cryptographic schemes and present an experimental implementation of isogeny-based Diffie-Hellman-like key exchange protocol as an illustration of their applicability.