Персона:
Набиев, Игорь Руфаилович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "НАНО-ФОТОН"
Фамилия
Набиев
Имя
Игорь Руфаилович
Имя

Результаты поиска

Теперь показываю 1 - 9 из 9
  • Публикация
    Только метаданные
    Weak Coupling between Light and Matter in Photonic Crystals Based on Porous Silicon Responsible for the Enhancement of Fluorescence of Quantum Dots under Two-Photon Excitation
    (2020) Kriukova, I. S.; Krivenkov, V. A.; Samokhvalov, P. S.; Nabiev, I. R.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2020, Pleiades Publishing, Inc.The development of optical and, in particular, photoluminescent sensors is currently becoming more and more significant because of their universality, selectivity, and high sensitivity ensuring their wide applications in practice. The efficiency of existing photoluminescent sensors can be increased by using photoluminescent nanomaterials and hybrid nanostructures. For biological applications of photoluminescent sensors, it is extremely relevant to excite photoluminescence in the near infrared spectral range, which allows excluding the effect of autofluorescence of biomolecules and ensuring a deeper penetration of radiation into biological tissues. In this work, it has been studied how the spectral and kinetic parameters of photoluminescence change under two-photon excitation of semiconductor quantum dots incorporated into a one-dimensional photonic crystal, a porous silicon microcavity. It has been shown that the formation of a weak coupling between an exciton transition in quantum dots and an eigenmode of the microcavity enhances the photoluminescence of quantum dots. It is important that quantum dots placed in the porous silicon matrix hold a sufficiently large cross section for two-photon absorption, which makes it possible to efficiently excite their exciton states up to saturation without reaching powers leading to the photothermic destruction of the structure of porous silicon and to the disappearance of the weak coupling effect. It has been demonstrated that the radiative recombination rate under the two-photon excitation of the system consisting of quantum dots and the microcavity increases by a factor of 4.3; it has been shown that this increase is due to the Purcell effect. Thus, fabricated microcavities based on 1D porous silicon crystals allow controlling the quantum yield of photoluminescence of quantum dots under two-photon excitation, which opens prospects for the development of new photoluminescent sensors based on quantum dots operating in the near infrared spectral range.
  • Публикация
    Только метаданные
    Long-range coupling of individual quantum dots with plasmonic nanoparticles in a thin-film hybrid material
    (2020) Rakovich, Y. P.; Dyagileva, D. V.; Krivenkov, V. A.; Samokhvalov, P. S.; Nabiev, I. R.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2020 SPIE.Semiconductor quantum dots (QDs) are widely used in photovoltaic and optoelectronic devices due to their unique optical properties. Photoluminescence (PL) properties of QDs can be significantly improved by their electromagnetic coupling with plasmonic nanoparticles (PNPs). The excitation of resonant localized plasmon modes leads to the enhancement of the density of photon states and increase of electromagnetic field near the surface of PNPs, what boosts the acceleration of the exciton radiative decay, known as the Purcell effect. To study the dependence of the degree of acceleration of radiative decay rate (Purcell factor) on the distance between QDs and PNPs, we fabricated thin-film hybrid structures based on CdSe(core)/ZnS/CdS/ZnS(multishell) QDs and silver or gold PNPs with a controllable distance between these components. The change in the radiative decay rate of excitons was calculated from the PL intensities and lifetimes before and after the deposition of PNPs on top of the QD thin film covered by a poly(methyl methacrylate) (PMMA) spacer. For both PNP types, the PL lifetime of underlying QDs decreased, whereas the PL intensity of the latter decreased only slightly for gold PNPs and even increased for silver PNPs. This indicates the acceleration of QDs radiative decay (Purcell effect) mediated by exciton-plasmon interaction. The Purcell factor was higher for silver PNPs than that for gold PNPs, what can be explained by the better spectral overlap between the QDs PL band and silver PNPs absorbance and the absence of interband absorption in silver at the wavelength of QDs PL. The results of this study provide better understanding of the Purcell effects in hybrid materials based on QDs and PNPs.
  • Публикация
    Только метаданные
    Spectral and Spatial Characteristics of the Electromagnetic Modes in a Tunable Optical Microcavity Cell for Studying Hybrid Light-Matter States
    (2019) Moehalov, K. E.; Dovzhenko, D. S.; Vaskan, I. S.; Rakovich, Yu. P.; Nabiev, I. R.; Набиев, Игорь Руфаилович
    Studies of resonance interaction between matter and localized electromagnetic field in a cavity have recently attracted much interest because they offer the possibility of controllably modifying some of the fundamental material properties. However, despite the large number of such studies, these is no universal approach that would allow investigation of sets of different samples with wide variation of the main experimental parameters of the optical modes. In this work, the main optical parameters of a previously developed universal tunable microcavity cell, i.e., the Q factor and mode volume, as well as their dependence on the characteristics of cavity mirrors and spacing between them, are analyzed. The results obtained will significantly expand the scope of applications of resonance interaction between light and matter, including such effects as the enhancement of Raman scattering, long-range resonance nonradiative energy transfer, and modification of chemical reaction rates.
  • Публикация
    Только метаданные
    Scanning Near-Field Optical Nanospectrophotometry: a New Method for Nanoscale Measurements of the Absorption Spectra of Single Nanoobjects
    (2019) Mochalov, K. E.; Solovyeva, D. O.; Vaskan, I. S.; Nabiev, I. R.; Набиев, Игорь Руфаилович
    © 2019, Pleiades Publishing, Ltd. Abstract: A new experimental method for nanoscale measurements of the absorption spectra of single nanoobjects has been developed based on scanning near-field optical microspectroscopy (SNOM) and nanospectrophotometry (NSP). The main distinctive feature of the proposed SNOM-NSP technique consists in depositing a sample onto a coverglass followed by its probing in the total internal reflection spectroscopy mode. This approach allows the number of analyzed samples to be significantly increased and provides the possibility of combining measurements with other optical techniques. The proposed SNOM-NSP method has been successfully used for studying single plasmonic nanoparticles and their complexes with Rhodamine 6G dye.
  • Публикация
    Только метаданные
    Conversion of Semiconductor Nanoparticles to Plasmonic Materials by Targeted Substitution of Surface-Bound Organic Ligands
    (2019) Samokhvalov, P. S.; Volodin, D. O.; Bozrova, S. V.; Dovzhenko, D. S.; Zvaigzne, M. A.; Lin'kov, P. A.; Nifontova, G. O.; Petrova, I. O.; Sukhanova, A. V.; Nabiev, I. R.; Самохвалов, Павел Сергеевич; Нифонтова, Галина Олеговна; Суханова, Алена Владимировна; Набиев, Игорь Руфаилович
    © 2019, Pleiades Publishing, Ltd.Abstract: Plasmonic nanoparticles have become a popularly accepted research tool in optoelectronics, photonics, and biomedical applications. The relatively recently appearing semiconductor plasmonic nanoparticles, as opposed to metal ones, are characterized by infrared plasmonic optical transitions and their application has a great future. In this work, the possibility of conversion of semiconductor (excitonic) fluorescence nanocrystals, i.e., quantum dots of the CuInS2 composition, to plasmonic nanoparticles by postsynthetic treatment without changes in the chemical composition of inorganic part of the nanocrystals was demonstrated for the first time ever.
  • Публикация
    Только метаданные
    Physical Interactions of Biopolymers with Nanoparticles
    (2019) Kosmyntseva, A. V.; Petrova, I. O.; Rakovich, Y. P.; Sukhanova, A. V.; Nabiev, I. R.; Набиев, Игорь Руфаилович
    Using fluorescence resonance energy transfer, the physical interaction of nanoparticles with biopolymers is studied by the example of the interaction of quantum dots (energy donor) with two-chain oligonucleotides labeled with a fluorescent organic dye BDP TR (energy acceptor). The high-efficiency resonance energy transfer from quantum dots to an organic dye not only makes it possible to study the dependence of the transfer efficiency on the donor-acceptor molar ratio but also represents an efficient tool for studying the interactions of oligonucleotides of different structures with nanoscale objects.
  • Публикация
    Только метаданные
    Tunable Fabry–Perot Microcavity Based on Boron Nitride and Rhodamine 6G
    (2023) Granizo, E. A.; Samokhvalov, P. S.; Nabiev, I. R.; Гранисо Роман, Эвелин Алехандра; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
  • Публикация
    Только метаданные
    Hybrid Systems Based on Porous Silicon Photonic Crystals, Liquid Crystals, and Quantum Dots
    (2023) Kriukova, I. S.; Martynov, I. L.; Samokhvalov, P. S.; Nabiev, I. R.; Крюкова, Ирина Сергеевна; Мартынов, Игорь Леонидович; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
  • Публикация
    Только метаданные
    Machine learning–assisted colloidal synthesis: A review
    (2024) Gulevich, D. G.; Nabiev, I. R.; Samokhvalov, P. S.; Гулевич, Даяна Галимовна; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич
    Artificial intelligence (AI) technologies, including machine learning and deep learning, have become ingrained in both everyday life and in scientific research. In chemistry, these algorithms are most commonly used for the development of new materials and drugs, recognition of microscopy images, and analysis of spectral data. Finding relationships between the parameters of chemical synthesis and the properties of the resultant materials is often challenging because of the large number of variations of the temperature and time of synthesis, the chemical composition and ratio of precursors, etc. Applying machine and deep learning to the organization of chemical experiments will considerably reduce the empiricism issues in chemical research. Colloidal nanomaterials, whose morphology, size, and phase composition are influenced directly not only by the synthesis conditions, but the reagents or solvents purity and other indistinct factors are highly demanded in optoelectronics, catalysis, biological imaging, and sensing applications. In recent years, AI methods have been increasingly used for determining the key factors of synthesis and selecting the optimal reaction conditions for obtaining nanomaterials with precisely controlled and reproducible characteristics. The purpose of this review is to analyze the current progress in the AI-assisted optimization of the most common methods of production of colloidal nanomaterials, including colloidal and hydrothermal syntheses, chemical reduction, and synthesis in flow reactors.