Персона: Набиев, Игорь Руфаилович
Загружается...
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Руководитель научной группы "НАНО-ФОТОН"
Фамилия
Набиев
Имя
Игорь Руфаилович
Имя
57 results
Результаты поиска
Теперь показываю 1 - 10 из 57
- ПубликацияОткрытый доступМИКРОФЛЮИДНАЯ ПРОТОЧНАЯ ЯЧЕЙКА ДЛЯ ПРОВЕДЕНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ(НИЯУ МИФИ, 2024) Соколов, П. М.; Самохвалов, П. С.; Набиев, И. Р; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич; Соколов, Павел МихайловичПолезная модель относится к области прикладных исследований, направленных на оптимизацию условий проведения химических реакций, например, для повышения их скорости, увеличения выхода продуктов реакции или смещения равновесия в пользу требуемых продуктов реакции, в частности создания микрофлюидной проточной ячейки для проведения химических реакций, в которой выполняется условие резонансной сильной связи между собственной электромагнитной модой микрофлюидной проточной ячейки и электронными и/или колебательными переходами молекул субстратов или катализаторов реакции для снижения энергии активации химической реакции. 12 з.п. ф-лы, 2 ил.
- ПубликацияОткрытый доступФЛУОРЕСЦЕНТНЫЙ ГИДРОГЕЛЬ ДЛЯ ДЕТЕКЦИИ БИОЛОГИЧЕСКИХ МОЛЕКУЛ(2024) Соколов, П. М.; Герасимович, Е. С.; Самохвалов, П. С.; Набиев, И. Р.; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич; Соколов, Павел Михайлович; Герасимович, Евгения СемёновнаИзобретение относится к области создания гибридных наноматериалов, предназначенных для детектирования органических и неорганических молекул, в частности, для создания флуоресцентных гидрогелей из флуоресцентных нанокристаллов и биологических распознающих молекул в ходе фазового перехода золь-гель. Флуоресцентный гидрогель для детекции биологических молекул состоит из флуоресцентных неорганических низкотоксичных нанокристаллов структуры ядро/оболочка, поверхность которых содержит тиол-содержащие лиганды, способные к гелебразованию за счет фазового перехода золь-гель, а также содержит лиганды, с которыми конъюгированы однодоменные антитела, которые специфически связывают исследуемый аналит, конъюгированные пространственно-ориентированным образом так, чтобы их антигенсвязывающие участки были ориентированы во вне от поверхности нанокристаллов. Техническим результатом является создание флуоресцентного гидрогеля для детекции биологических молекул, обеспечивающего равномерное распределение флуоресцентных неорганических низкотоксичных нанокристаллов структуры ядро/оболочка и биологических распознающих молекул на базе однодоменных антител, что позволяет повысить чувствительность детекции аналитов и использовать его в составе биосенсоров биологических молекул. 3 з.п. ф-лы, 1 ил.
- ПубликацияТолько метаданныеWeak Coupling between Light and Matter in Photonic Crystals Based on Porous Silicon Responsible for the Enhancement of Fluorescence of Quantum Dots under Two-Photon Excitation(2020) Kriukova, I. S.; Krivenkov, V. A.; Samokhvalov, P. S.; Nabiev, I. R.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2020, Pleiades Publishing, Inc.The development of optical and, in particular, photoluminescent sensors is currently becoming more and more significant because of their universality, selectivity, and high sensitivity ensuring their wide applications in practice. The efficiency of existing photoluminescent sensors can be increased by using photoluminescent nanomaterials and hybrid nanostructures. For biological applications of photoluminescent sensors, it is extremely relevant to excite photoluminescence in the near infrared spectral range, which allows excluding the effect of autofluorescence of biomolecules and ensuring a deeper penetration of radiation into biological tissues. In this work, it has been studied how the spectral and kinetic parameters of photoluminescence change under two-photon excitation of semiconductor quantum dots incorporated into a one-dimensional photonic crystal, a porous silicon microcavity. It has been shown that the formation of a weak coupling between an exciton transition in quantum dots and an eigenmode of the microcavity enhances the photoluminescence of quantum dots. It is important that quantum dots placed in the porous silicon matrix hold a sufficiently large cross section for two-photon absorption, which makes it possible to efficiently excite their exciton states up to saturation without reaching powers leading to the photothermic destruction of the structure of porous silicon and to the disappearance of the weak coupling effect. It has been demonstrated that the radiative recombination rate under the two-photon excitation of the system consisting of quantum dots and the microcavity increases by a factor of 4.3; it has been shown that this increase is due to the Purcell effect. Thus, fabricated microcavities based on 1D porous silicon crystals allow controlling the quantum yield of photoluminescence of quantum dots under two-photon excitation, which opens prospects for the development of new photoluminescent sensors based on quantum dots operating in the near infrared spectral range.
- ПубликацияТолько метаданныеEnhancement of spontaneous emission of semiconductor quantum dots inside one-dimensional porous silicon photonic crystals(2020) Dovzhenko, D.; Martynov, I.; Samokhvalov, P.; Osipov, E.; Lednev, M.; Chistyakov, A.; Nabiev, I.; Мартынов, Игорь Леонидович; Самохвалов, Павел Сергеевич; Осипов, Евгений Валерьевич; Чистяков, Александр Александрович; Набиев, Игорь РуфаиловичControlling spontaneous emission by modifying the local electromagnetic environment is of great interest for applications in optoelectronics, biosensing and energy harvesting. Although the development of devices based on one-dimensional porous silicon photonic crystals with embedded luminophores is a promising approach for applications, the efficiency of the embedded luminophores remains a key challenge because of the strong quenching of the emission due to the contact of the luminophores with the surface of porous silicon preventing the observation of interesting light-matter coupling effects. Here, we experimentally demonstrate an increase in the quantum dot (QD) spontaneous emission rate inside a porous silicon microcavity and almost an order of magnitude enhancement of QD photoluminescence intensity in the weak light-matter coupling regime. Furthermore, we have demonstrated drastic alteration of the QD spontaneous emission at the edge of the photonic band gap in porous silicon distributed Bragg reflectors and proved its dependence on the change in the density of photonic states. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
- ПубликацияТолько метаданныеEnhanced spontaneous emission from two-photon-pumped quantum dots in a porous silicon microcavity(2020) Dovzhenko, D.; Krivenkov, V.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь РуфаиловичPhotoluminescence (PL)-based sensing techniques have been significantly developed in practice due to their key advantages in terms of sensitivity and versatility of the approach. Recently, various nanostructured and hybrid materials have been used to improve the PL quantum yield and the spectral resolution. The near-infrared (NIR) fluorescence excitation has attracted much attention because it offers deep tissue penetration and it avoids the autofluorescence of the biological samples. In our study, we have shown both spectral and temporal PL modifications under two-photon excitation of quantum dots (QDs) placed in one-dimensional porous silicon photonic crystal (PhC) microcavities. We have demonstrated an up-to-4.3-fold Purcell enhancement of the radiative relaxation rate under two-photon excitation. The data show that the use of porous silicon PhC microcavities operating in the weak coupling regime permits the enhancement of the PL quantum yield of QDs under two-photon excitation, thus extending the limits of their biosensing applications in the NIR region of the optical spectrum. (C) 2020 Optical Society of America
- ПубликацияТолько метаданныеControlling Charge Transfer from Quantum Dots to Polyelectrolyte Layers Extends Prospective Applications of Magneto-Optical Microcapsules(2020) Efimov, A. E.; Agapova, O. I.; Agapov, I. I.; Korostylev, E.; Nifontova, G.; Krivenkov, V.; Zvaigzne, M.; Samokhvalov, P.; Nabiev, I.; Нифонтова, Галина Олеговна; Самохвалов, Павел Сергеевич; Набиев, Игорь РуфаиловичThe layer-by-layer (LbL) deposition approach allows combined incorporation of fluorescent, magnetic, and plasmonic nanoparticles into the shell of polyelectrolyte microcapsules to obtain stimulus-responsive systems whose imaging and drug release functions can be triggered by external stimuli. The combined use of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) yields magnetic-field-driven imaging tools that can be tracked and imaged even deep in tissue when the appropriate type of QDs and wavelength of their excitation are used. QDs are excellent photonic labels for microcapsule encoding due to their close-to-unity photoluminescence (PL) quantum yields, narrow PL emission bands, and tremendous one- and two-photon extinction coefficients. However, the presence of MNPs and electrically charged polyelectrolyte molecules used for the LbL fabrication of magneto-optical microcapsules provokes alterations of the QD optical properties because of the photoinduced charge and energy transfer resulting in QD photodarkening or photobrightening. These lead to variation of the microcapsule PL signal under illumination, which hampers their tracking and quantitative analysis in cells and tissues. Here, we have studied the effects of the structure and spatial arrangement of the nanoparticles within the microcapsule polyelectrolyte shell, the total shell thickness, and the shell surface charge on their PL properties under continuous illumination. The roles of the charge transfer and its main driving forces in the stability of the microcapsules PL signal have been established, and the design of the microcapsules dually encoded with QDs and MNPs providing the strongest and most stable PL has been determined. Controlling the energy transfer from the QDs and MNPs and the charge transfer from QDs to polyelectrolyte layers in the engineering of magneto-optical microcapsules with a bright and stable PL signal extends their applications to long-lasting quantitative fluorescence imaging.
- ПубликацияТолько метаданныеAbsolute two-photon absorption cross-sections of single-exciton states in semiconductor nanocrystals(2020) Krivenkov, V.; Samokhvalov, P.; Dyagileva, D.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2020 SPIE.Semiconductor nanocrystals (SNCs), in particular, quantum dots (QDs) and nanoplatelets (NPLs), have orders of magnitude higher two-photon absorption cross-sections (TPACS) than organic dyes, what paves the way to their advanced applications in bioimaging, sensing, and optoelectronics. Traditionally, z-scan and two-photon photoluminescence (PL) excitation spectroscopy are used to determine the TPACS values. The main disadvantage of both methods is the necessity to know the exact sample concentration. In this study, we describe an approach to the TPACS determination from the analysis of two-photon-excited (TPE) PL saturation in CdSe(core)/ZnS/CdS/ZnS(multishell) QDs and CdSe NPLs. The results obtained for NPLs using developed approach are significantly smaller than those obtained by the z-scan method and are close to the values obtained for QDs. We assume that this discrepancy occurs due to the fact, that unlike the z-scan technique, the TPE PL saturation method measures the TPACS only for single-exciton states because of the low PL quantum yields of multiexciton states. Therefore, there is no need to know the concentration, which eliminates the corresponding estimation error. Thus, the measurement of TPE PL saturation in SNCs makes it possible to determine the absolute values of the TPACS of single-exciton states, which are more informative for applications of TPE PL than the TPACS of mixed multiexciton states.
- ПубликацияТолько метаданныеLong-range coupling of individual quantum dots with plasmonic nanoparticles in a thin-film hybrid material(2020) Rakovich, Y. P.; Dyagileva, D. V.; Krivenkov, V. A.; Samokhvalov, P. S.; Nabiev, I. R.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2020 SPIE.Semiconductor quantum dots (QDs) are widely used in photovoltaic and optoelectronic devices due to their unique optical properties. Photoluminescence (PL) properties of QDs can be significantly improved by their electromagnetic coupling with plasmonic nanoparticles (PNPs). The excitation of resonant localized plasmon modes leads to the enhancement of the density of photon states and increase of electromagnetic field near the surface of PNPs, what boosts the acceleration of the exciton radiative decay, known as the Purcell effect. To study the dependence of the degree of acceleration of radiative decay rate (Purcell factor) on the distance between QDs and PNPs, we fabricated thin-film hybrid structures based on CdSe(core)/ZnS/CdS/ZnS(multishell) QDs and silver or gold PNPs with a controllable distance between these components. The change in the radiative decay rate of excitons was calculated from the PL intensities and lifetimes before and after the deposition of PNPs on top of the QD thin film covered by a poly(methyl methacrylate) (PMMA) spacer. For both PNP types, the PL lifetime of underlying QDs decreased, whereas the PL intensity of the latter decreased only slightly for gold PNPs and even increased for silver PNPs. This indicates the acceleration of QDs radiative decay (Purcell effect) mediated by exciton-plasmon interaction. The Purcell factor was higher for silver PNPs than that for gold PNPs, what can be explained by the better spectral overlap between the QDs PL band and silver PNPs absorbance and the absence of interband absorption in silver at the wavelength of QDs PL. The results of this study provide better understanding of the Purcell effects in hybrid materials based on QDs and PNPs.
- ПубликацияТолько метаданныеOptical Properties of Quantum Dots with a Core–Multishell Structure(2019) Linkov, P.; Samokhvalov, P.; Vokhmintsev, K.; Zvaigzne, M.; Krivenkov, V. A.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2019, Pleiades Publishing, Inc. In the last decade, colloidal semiconductor nanocrystals (quantum dots) have been not only studied fundamentally but also applied in photovoltaics, optoelectronics, and biomedicine. Beginning with simple approaches to the deposition of protective shells, e.g., ZnS on CdSe cores, searches for ways to increase the quantum yield of photoluminescence of quantum dots have resulted now in the development of new types of quantum dots characterized not only by record high extinction coefficients but also by high photoluminescence quantum yields. In this work, the optical properties of core–multishell quantum dots have been analyzed. These quantum dots have been specially designed to reach the maximum possible localization of excited charge carriers inside luminescent cores, which makes it possible to reach a photoluminescence quantum yield close to 100%. Core–multishell quantum dot samples with a shell thickness of 3–7 monolayers have been fabricated. Changes in the characteristics of optical transitions in such quantum dots with an increase in the number of layers of the shell have been studied. The effect of the thickness of the shell on the optical properties of prepared quantum dots has been analyzed. In particular, analysis of photoluminescence lifetimes of such quantum dots has revealed a possible alternative mechanism of radiation of core–multishell quantum dots based on the slow charge carrier transfer from the excited outer layer of the CdS shell to the CdSe core.
- ПубликацияТолько метаданныеRemarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot – Purple membrane complexes under two-photon excitation(2019) Krivenkov, V.; Samokhvalov, P.; Nabiev, I.; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович© 2019 Elsevier B.V. The photosensitive protein bacteriorhodopsin (bR)has been shown to be a promising material for optoelectronic applications, but it cannot effectively absorb and utilize light energy in the near-infrared (NIR)region of the optical spectrum. Semiconductor quantum dots (QDs)have two-photon absorption cross-sections two orders of magnitude larger than those of bR and can effectively transfer the up-converted energy of two NIR photons to bR via the Förster resonance energy transfer (FRET). In this study, we have engineered a photoelectrochemical cell based on a hybrid material consisting of QDs and bR-containing purple membranes (PMs)of Halobacterium salinarum and demonstrated that this cell can generate an electrical signal under the two-photon laser excitation. We have shown that the efficiency of light conversion by the PM–QD hybrid material under two-photon excitation is up to 4.3 times higher than the efficiency of conversion by PMs alone. The QD integration into the bR-containing PMs significantly improves the bR capacity for utilizing light upon two-photon laser excitation, thus paving the way to the engineering of biologically inspired hybrid NIR nonlinear optoelectronic elements. The nonlinear nature of two-photon excitation may provide considerable advantages, such as a sharp sensitivity threshold and the possibility of precise three-dimensional location of excitation in holography and optical computing.