Персона:
Степаненко, Александр Александрович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Степаненко
Имя
Александр Александрович
Имя

Результаты поиска

Теперь показываю 1 - 2 из 2
  • Публикация
    Открытый доступ
    Impact of divertor plasma parameters on characteristics of current-convective turbulence under DIII-D-like detached conditions
    (2019) Wang, H. Q.; Krasheninnikov, S. I.; Stepanenko, A. A.; Степаненко, Александр Александрович
    © 2019 Author(s).Recent observations of turbulence in plasma of a DIII-D inner divertor revealed the formation of poloidally localized fluctuations with frequencies in the low-kilohertz range, when the machine was operating in the fluctuating state of detachment. This phenomenon can be related to the onset of the current-convective instability (CCI). In this contribution, we use the basic physical model of the instability to simulate the saturated current-convective turbulence under the DIII-D-like detached conditions. Parameter scans of turbulence characteristics are performed. The spatial and temporal spectra of fluctuations are obtained and compared with the available experimental data. It is demonstrated that simulations are able to qualitatively reproduce most of the distinct features of turbulence found in the experiments, indicating that the CCI can be a plausible mechanism responsible for plasma activity recently observed in DIII-D.
  • Публикация
    Открытый доступ
    Relaxation Phenomena in Thermal Molecular Plasmas
    (2020) Stepanenko, A. A.; Zhdanov, V. M.; Степаненко, Александр Александрович
    We present the results of analysis of relaxation phenomena in thermal molecular plasmas. The physical assumptions and the general scalar moment equations, obtained in the 17-moment approximation of the Grad method, are given. By using these equations, we derive the expressions for the relaxation pressure and bulk viscosity coefficients associated with heavy plasma components (atoms, molecules and their ions) and electrons. To gain a deeper understanding of how the physical parameters of particles and inter-particle interactions influence on the plasma relaxation properties, we also employ the semi-qualitative model of energy relaxation for plasma components. Within this model, the expressions for the partial relaxation pressures and bulk viscosity coefficients are derived and analyzed. It is demonstrated that depending on the plasma degree of ionization and the ratio of the characteristic timescales of energy exchange between particles, the partial relaxation pressures and bulk viscosity coefficients can not only vary but also change their signs.