Персона: Клочков, Алексей Николаевич
Загружается...
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт нанотехнологий в электронике, спинтронике и фотонике
Институт ИНТЭЛ занимается научной деятельностью и подготовкой специалистов в области исследования физических принципов, проектирования и разработки технологий создания компонентной базы электроники гражданского и специального назначения, а также построения современных приборов на её основе.
Наша основная цель – это создание и развитие научно-образовательного центра мирового уровня в области наноструктурных материалов и устройств электроники, спинтроники, фотоники, а также создание эффективной инновационной среды в области СВЧ-электронной и радиационно-стойкой компонентной базы, источников ТГц излучения, ионно-кластерных технологий материалов.
Статус
Фамилия
Клочков
Имя
Алексей Николаевич
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияОткрытый доступTHZ QUANTUM CASCADE LASERS WITH TWO-PHOTON DESIGN(НИЯУ МИФИ, 2023) Khabibullin, R. A.; Pushkarev, S. S.; Galie, R. R.; Ponomarev, D. S.; Vasil’evskii, I. S.; Vinichenko, A. N.; Klochkov, A. N.; Bagaev, T. A.; Ladugin, M. A.; Marmalyuk, A. A.; Maremyanin, K. V.; Gavrilenko, V. I.; Ushakov, D. V.; Afonenko, A. A.; Клочков, Алексей Николаевич; Виниченко, Александр Николаевич; Васильевский, Иван СергеевичThe possibility of implementing two radiation transitions in the gain module for THz QCL has been shown many times [1,2]. However, the activation of these transitions is achieved at diff erent bias points, which corresponds to the optimal alignment of energy levels for each transition. We propose to add an additional step to the ladder of energy levels in the gain module, equal to the energy of THz photon. Due to the low energy of THz photon, it becomes possible to design the gain module based on the conventional GaAs/Al0.15Ga0.85As heterojunction with two-photon emission at one bias point.
- ПубликацияОткрытый доступСПОСОБ ФОРМИРОВАНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО ВЫСОКОЛЕГИРОВАННОГО НАНОСЛОЯ INAS НА ПОДЛОЖКЕ САПФИРА ДЛЯ РАДИАЦИОННО-СТОЙКИХ СЕНСОРОВ МАГНИТНОГО ПОЛЯ(НИЯУ МИФИ, 2022) Васильевский, И. С.; Виниченко, А. Н.; Каргин, Н. И.; Клочков, А. Н.; Сафонов, Д. А.; Сафонов, Данил Андреевич; Виниченко, Александр Николаевич; Каргин, Николай Иванович; Клочков, Алексей Николаевич; Васильевский, Иван СергеевичИзобретение относится к полупроводниковым наногетероструктурам AIIIBV, используемым для изготовления радиационно стойких сенсоров магнитного поля. Технический результат предлагаемого изобретения направлен на получение поликристаллических высоколегированных нанослоев InAs высокого кристаллического качества на сапфировой подложке с низкой шероховатостью поверхности и низким удельным сопротивлением, пригодных для создания радиационно стойких сенсоров магнитного поля. Создание нижнего зародышевого слоя InAlAs толщиной 1÷5 нм, расположенного непосредственно на подложке сапфира, необходимо для смачивания поверхности сапфира и предотвращения аморфизации поверхности в процессе проведения эпитаксиального роста вышележащих слоев. Следующий за нижним зародышевым слоем отжиг слоя InAs в потоке мышьяка в течение 1÷5 мин позволяет сгладить поверхность нанослоя, уменьшив шероховатость поверхности гетероструктуры. Толщина нижнего зародышевого слоя определяется с одной стороны необходимостью восстановления поверхности подложки сапфира и предотвращением ее аморфизации после обязательного предварительного обезгаживания, а с другой стороны - предотвращением механической релаксации перед формированием верхнего зародышевого слоя. Формирование верхнего зародышевого слоя InAs толщиной 1÷3 нм с последующим отжигом в потоке мышьяка в течение 8÷12 минут приводит к релаксации механических напряжений в слое, в результате чего дислокации несоответствия оказываются в нижележащих слоях гетероструктуры и в меньшей степени проникают в высоколегированный слой InAs, что позволяет получать слои InAs с низким удельным сопротивлением более высокого кристаллического качества. Наличие переходного слоя толщиной 1÷3 нм необходимо, чтобы избежать проводимости по вспомогательным слоям под действием нейтронного облучения, в том числе при процессах трансмутационного легирования, что может приводить к изменению чувствительности и удельного сопротивления сенсора магнитного поля. 3 ил.