Персона:
Бородин, Владимир Алексеевич

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Руководитель группы "Моделирование физических процессов"
Фамилия
Бородин
Имя
Владимир Алексеевич
Имя

Результаты поиска

Теперь показываю 1 - 2 из 2
  • Публикация
    Открытый доступ
    Bubble-to-void transition promoted by oxide nanoparticles in ODS-EUROFER steel ion implanted to high He content
    (2021) Gentils, A.; Vladimirov, P. V.; Golovchanskiy, I. A.; Lindau, R.; Emelyanova, O.; Borodin, V. A.; Ganchenkova, M. G.; Dzhumaev, P. S.; Емельянова, Ольга Владимировна; Бородин, Владимир Алексеевич; Джумаев, Павел Сергеевич
    © 2020The paper deals with a detailed study of He-filled cavity ensemble development in ODS-EUROFER steel implanted with 10 keV helium ions to a high peak concentration of 8.5 × 103 appm both with and without simultaneous irradiation with 4 MeV gold ions, which allowed us to strongly vary the ratios of dpa/He introduction. The subsequent transmission electron microscopy examination reveals excellent radiation stability of He-implanted sample in the single-beam implantation mode. In contrast, after the simultaneous dual-beam irradiation a bubble-to-void transition was observed for bubbles that were associated with yttria nanoparticles. The relative importance of different He bubble families observed in the He-implanted samples for the swelling accumulation is quantitatively assessed, emphasizing the potential risks of abrupt swelling acceleration in the case of bubble-to-void transition launched by nanoparticles. A model of bubble-to-void transition for gas bubbles associated with spherical second-phase particles is developed and used to rationalize experimental observations.
  • Публикация
    Открытый доступ
    Microstructural evolution in ODS-EUROFER steel caused by high-dose He ion implantations with systematic variation of implantation parameters
    (2023) Emelyanova, O. V.; Gentils, A.; Borodin, V. A.; Dzhumaev, P. S.; Емельянова, Ольга Владимировна; Бородин, Владимир Алексеевич; Джумаев, Павел Сергеевич
    The paper presents a detailed analysis of helium (He) bubble development in ODS-EUROFER steel caused by helium ion implantation in different regimes, with a particular attention to the role of the oxide nanoparticles in promoting the growth of He bubbles, helium accumulation and gas-driven swelling. The Transmission Electron Microscopy (TEM) characterization of steel samples implanted applying systematic variation of experimental parameters has allowed clarifying the trends of the bubble microstructure evolution depending on the implantation dose, flux, and sample temperature. It was found that in all investigated implantation regimes He bubbles formed both in the grain bulk and on various structural defects (dislocations, grain boundaries, oxide particles and carbide precipitates), but the sizes and densities of bubbles in different bubble populations were sensitive to particular irradiation conditions. In the majority of cases the main traps for implanted helium and the main contributors to the estimated swelling were bubbles associated with grain boundaries, though in some cases (high implantation dose or lower temperature) the bubbles in the grain bulk were competitive with the grain boundary bubble population. Oxide particles in ODS-EUROFER were found to be excellent nucleation sites for He bubbles and practically each observed particle hosted a single relatively large bubble, sometimes as large as the particle itself. However, the contribution of oxide-associated bubbles to the estimated swelling and He inventory was found to be minor as compared to other bubble populations because of a relatively low number density of nano-oxides. Comparison of ODS-EUROFER and EUROFER 97 samples implanted with He ions in identical regimes has demonstrated lower efficiency of ODS-EUROFER for accumulating implanted helium in bubbles and noticeably higher share of helium atoms trapped in the vacancy defects invisible by TEM.