Персона: Стриханов, Михаил Николаевич
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
The Detector Development and Physics Program in sPHENIX Experiment at RHIC
2019, Kim, Y., Angerami, A., Alfred, M., Atkin, E., Brandin, A., Okorokov, V., Riabov, V., Samsonov, V., Strikhanov, M., Taranenko, A., Аткин, Эдуард Викторович, Брандин, Андрей Владимирович, Окороков, Виталий Алексеевич, Рябов, Виктор Германович, Стриханов, Михаил Николаевич, Тараненко, Аркадий Владимирович
The sPHENIX experiment at RHIC will collect high statistics proton-proton, proton-nucleus and nucleus-nucleus data, starting in the early 2020's. The sPHENIX capabilities enable state-of-the-art studies of jet modification, upsilon suppression and open heavy flavor production to probe the microscopic nature of the strongly-coupled Quark Gluon Plasma, and will allow a broad range of cold QCD studies. The sPHENIX detector will provide precision vertexing, tracking and electromagnetic and hadronic calorimetry in the central pseudorapidity region vertical bar eta vertical bar < 1.1, with full azimuth coverage, at the full RHIC collision rate, delivering unprecedented data sets for hard probe tomography measurements at RHIC. In this talk, we will present a brief overview of the sPHENIX detector design with emphasis on calorimetry. The novel design of the sPHENIX calorimeters includes a tungsten/scintillating fiber electromagnetic calorimeter and two steel/scintillating tile hadronic calorimeter sections. The calorimeter has been optimized for upsilon and jet measurements in the high multiplicity environment of heavy-ion collisions. The design has been simulated in detail using GEANT4, and the simulations have extensively vetted against results obtained from the T-1044 test beam facility at FNAL Both simulation data and test beam data, and the resulting jet physics performance, will be presented in this talk.
sPHENIX Collaboration
2019, Angerami, A., Alfred, M., Akiba, Y., Aidala, C., Atkin, E., Brandin, A., Okorokov, V., Riabov, V., Samsonov, V., Strikhanov, M., Taranenko, A., Аткин, Эдуард Викторович, Брандин, Андрей Владимирович, Окороков, Виталий Алексеевич, Рябов, Виктор Германович, Стриханов, Михаил Николаевич, Тараненко, Аркадий Владимирович
Status and initial physics performance studies of the MPD experiment at NICA
2022, Abgaryan, V., Acevedo Kado, R., Afanasyev, S. V., Alpatov, E., Atkin, E., Barbashina, N., Blaschke, D., Demanov, A., Golosov, O., Idrisov, D., Kashirin, E., Khyzhniak, E., Luong, V. B., Nigmatkulov, G., Parfenov, P., Samsonov, V., Selyuzhenkov, I., Strikhanov, M., Taranenko, A., Алпатов, Егор Вячеславович, Барбашина, Наталья Сергеевна, Деманов, Александр Евгеньевич, Голосов, Олег Владимирович, Идрисов, Дим Маратович, Нигматкулов, Григорий Александрович, Парфенов, Петр Евгеньевич, Стриханов, Михаил Николаевич, Тараненко, Аркадий Владимирович
The Nuclotron-based Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations. © 2022, The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature.
Unperturbed inverse kinematics nucleon knockout measurements with a carbon beam
2021, Patsyuk, M., Kahlbow, J., Laskaris, G., Duer, M., Atkin, E., Barbashina, N., Bolozdynya, A., Fillipov, K., Finogeev, D., Galavanov, A., Morozov, S., Samsonov, V., Selyuzhenkov, I., Senger, P., Shumikhin, V., Sosnovtsev, V., Strikhanov, M., Taranenko, A., Аткин, Эдуард Викторович, Барбашина, Наталья Сергеевна, Болоздыня, Александр Иванович, Галаванов, Андрей Владиевич, Сосновцев, Валерий Витальевич, Стриханов, Михаил Николаевич, Тараненко, Аркадий Владимирович
© 2021, The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature.Particle knockout scattering experiments1,2 are fundamental for mapping the structure of atomic nuclei2–6, but their interpretation is often complicated by initial- and final-state interactions of the incoming and scattered particles1,2,7–9. Such interactions lead to reduction in the scattered particle flux and distort their kinematics. Here we overcome this limitation by measuring the quasi-free scattering of 48 GeV c–112C ions from hydrogen. The distribution of single protons is studied by detecting two protons at large angles in coincidence with an intact 11B nucleus. The 11B detection suppresses the otherwise large distortions of reconstructed single-proton distributions induced by initial- and final-state interactions. By further detecting residual 10B and 10Be nuclei, we also identified short-range correlated nucleon–nucleon pairs9–13 and provide direct experimental evidence for separation of the pair wavefunction from that of the residual many-body nuclear system9,14. All measured reactions are well described by theoretical calculations that include no distortions from the initial- and final-state interactions. Our results showcase the ability to study the short-distance structure of short-lived radioactive nuclei at the forthcoming Facility for Antiproton and Ion Research (FAIR)15 and Facility for Rare Isotope Beams (FRIB)16 facilities, which is relevant for understanding the structure and properties of nuclei far from stability and the formation of visible matter in the Universe.
Status and initial physics performance studies of the MPD experiment at NICA
2022, Abgaryan, V., Acevedo Kado, R., Afanasyev, S. V., Alpatov, E., Atkin, E., Barbashina, N., Blaschke, D., Demanov, A., Golosov, O., Idrisov, D., Kashirin, E., Khyzhniak, E., Luong, V. B., Nigmatkulov, G., Parfenov, P., Samsonov, V., Selyuzhenkov, I., Strikhanov, M., Taranenko, A., Стриханов, Михаил Николаевич, Деманов, Александр Евгеньевич, Идрисов, Дим Маратович, Голосов, Олег Владимирович, Парфенов, Петр Евгеньевич, Тараненко, Аркадий Владимирович, Нигматкулов, Григорий Александрович, Алпатов, Егор Вячеславович, Аткин, Эдуард Викторович, Барбашина, Наталья Сергеевна
The Nuclotron-based Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations. © 2022, The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature.
Production of π + and K+ mesons in argon-nucleus interactions at 3.2 A GeV
2023, Afanasiev, S., Atkin, E., Barbashina, N., Bolozdynya, A., Galavanov, A., Shumikhin, V., Sosnovtsev, V., Strikhanov, M., Аткин, Эдуард Викторович, Барбашина, Наталья Сергеевна, Болоздыня, Александр Иванович, Галаванов, Андрей Владиевич, Сосновцев, Валерий Витальевич, Стриханов, Михаил Николаевич
The BM@N spectrometer at the NICA accelerator complex
2024, Afanasiev, S., Atkin, E., Barbashina, N., Bolozdynya, A., Demanov, A., Galavanov, A., Golosov, O., Idrisov, D., Mamaev, M., Parfenov, P., Segal, I., Shumikhin, V., Sosnovtsev, V., Strikhanov, M., Taranenko, A., Troshin, V., Truttse, A., Zhavoronkova, I., Аткин, Эдуард Викторович, Барбашина, Наталья Сергеевна, Болоздыня, Александр Иванович, Деманов, Александр Евгеньевич, Галаванов, Андрей Владиевич, Голосов, Олег Владимирович, Идрисов, Дим Маратович, Мамаев, Михаил Валерьевич, Парфенов, Петр Евгеньевич, Сегаль, Илья Вадимович, Сосновцев, Валерий Витальевич, Стриханов, Михаил Николаевич, Тараненко, Аркадий Владимирович, Трошин, Валерий Владимирович, Трутце, Антон Андреевич, Жаворонкова, Ирина Андреевна
BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and taking data at the Nuclotron/NICA ion-accelerating complex. The aim of the BM@N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. We present a technical description of the BM@N spectrometer including all its subsystems.