Персона: Апсэ, Владимир Александрович
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
Safety of a fast reactor with a reflector containing a moderator with heavy atomic weight and weak neutron absorption БЕЗОПАСНОСТЬ БЫСТРОГО РЕАКТОРА С ОТРАЖАТЕЛЕМ, СОДЕРЖАЩИМ ЗАМЕДЛИТЕЛЬ С БОЛЬШИМ АТОМНЫМ ВЕСОМ И МАЛЫМ ПОГЛОЩЕНИЕМ НЕИТРОНОВ
2019, Kulikov, G. G., Shmelev, A. N., Apse, V. A., Kulikov, E. G., Куликов, Геннадий Генрихович, Апсэ, Владимир Александрович, Куликов, Евгений Геннадьевич
© 2019 Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University 'MEPhI'. All rights reserved.The purpose of the study is to justify the possibility of improving the safety of fast reactors by surrounding their cores with reflectors made of material with special neutron#physical properties. Such properties of the 208Pb lead isotope as heavy atomic weight, small absorption cross section, and high inelastic scattering threshold lead to some peculiarities in neutron kinetics of the fast reactor with a 208Pb reflector, which can significantly improve the reactor safety. The reflector will also make it possible to generate additional delayed neutrons, which are characterized by «dead» time. This will increase the resistibility of the fission chain reaction to reactivity jumps and exclude prompt supercriticality. Note that the additional delayed neutrons can be generated by the reactor designers. The relevance of the study is that the generation of additional delayed neutrons in the reflector will make it possible to reduce the consequences of a reactivity accident even if the reactivity introduced exceeds the effective fraction of delayed neutrons. At the same time, the role of the fraction of delayed neutrons as the maximum permissible reactivity for reactor safety is depreciated. The scientific novelty of the study is that the problem of the formation of additional neutrons, which in their properties are close to traditional delayed neutrons, has not been posed so far. The authors propose a new method for improving the safety of fast reactors by replenishing the fraction of delayed neutrons due to the time delay of prompt neutrons during their transfer in the reflector. To implement the considered advantages, the following combination is acceptable: lead enriched by 208Pb is used as a neutron reflector while natural lead or other material (sodium, etc.) is used as a coolant in the reactor core.
Proliferation-protected, ultra-high burn-up reactor fuel produced in the thorium blanket of a fusion neutron source
2020, Kulikov, G. G., Shmelev, A. N., Kulikov, E. G., Apse, V. A., Куликов, Геннадий Генрихович, Куликов, Евгений Геннадьевич, Апсэ, Владимир Александрович
Copyright © GLOBAL 2019 - International Nuclear Fuel Cycle Conference and TOP FUEL 2019 - Light Water Reactor Fuel Performance Conference.All rights reserved.This paper aims at finding solutions of so important problems of nuclear power as decreasing the scope and the number of technological operations, as well as enhancing the proliferation resistance of fissile materials in nuclear fuel cycle by means of minimal changes in the cycle. The method is including fusion neutron sources with thorium blanket into future nuclear power system. In addition to production of light uranium fraction consisting of 233U and 234U, high-energy 14-MeV neutrons emitted in the process of fusion (D,T)-reaction can generate 231Pa and 232U through (n,2n)- and (n,3n)reactions. It has been demonstrated that admixture of 231Pa into fresh fuel composition can stabilize its neutron-multiplying properties thanks to two well-fissile consecutive isotopes 232U and 233U, products of radiative neutron capture by 231Pa. Coupled system of two well-fissile isotopes can allow us to reach the following goals: the higher fuel burn-up and, as a consequence, the longer fuel lifetime; the shorter scope and the lower number of technological operations in nuclear fuel cycle; the better economic potential of nuclear power technologies.