Персона:
Гаспарян, Юрий Микаэлович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Руководитель научной группы "Плазменные и лазерные технологии новых материалов для ядерной и термоядерной энергетики"
Руководитель научной группы -Международный центр ядерных компетенций (МЦЯДКОМ)
Фамилия
Гаспарян
Имя
Юрий Микаэлович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 17
  • Публикация
    Открытый доступ
    TIME-OF-FLIGHT ANALYSIS OF IONS FROM LASER-INDUCED PLASMA
    (НИЯУ МИФИ, 2023) Grishaev, M. V.; Efimov, N. E.; Sinelnikov, D. N.; Nikitin, I. A.; Gasparyan, Y. M.; Vovchenko, E. D.; Вовченко, Евгений Дмитриевич; Синельников, Дмитрий Николаевич; Ефимов, Никита Евгеньевич; Гришаев, Максим Валерьевич; Гаспарян, Юрий Микаэлович; Никитин, Иван Андреевич
    One of the most detrimental phenomena in fusion research is the interaction of plasma with a surface of a first wall and in-chamber elements. It causes erosion of the plasma-facing components (PFC), which in turn results in a degradation of plasma parameters due to transport of erosion products into the hot plasma. On the other hand, these processes cause re-deposition of the eroded material together with fuel components (deuterium and tritium). This is the dominant mechanism for fuel retention in PFC.
  • Публикация
    Открытый доступ
    ОДНОВРЕМЕННОЕ СО-ОСАЖДЕНИЕ НЕСКОЛЬКИХ ИЗОТОПОВ ВОДОРОДА С МЕТАЛЛАМИ
    (НИЯУ МИФИ, 2023) Крат, С. А.; Пришвицын, А. С.; Гаспарян, Ю. М.; Крат, Степан Андреевич; Гаспарян, Юрий Микаэлович; Пришвицын, Александр Сергеевич
    Hydrogen isotope accumulation in fusion devices is an important issue. It affects installation operation parameters, such as hydrogen recycling. It is also of vital importance from the perspective of radiation safety, when the isotope in question is radioactive tritium. Only 700 grams of tritium are allowed in ITER tokamak at any one time.
  • Публикация
    Открытый доступ
    ЗАМЕЩЕНИЕ ИЗОТОПОВ ГЕЛИЯ В ВОЛЬФРАМЕ ПРИ ПОСЛЕДОВАТЕЛЬНОМ ИОННОМ ОБЛУЧЕНИИ
    (НИЯУ МИФИ, 2023) Умеренкова, А. С.; Гаспарян, Ю. М.; Арутюнян, З. Р.; Ефимов, В. С.; Сергеев, Н. С.; Сорокин, И. А.; Остойич, Н.; Остойич, Никола; Гаспарян, Юрий Микаэлович; Умеренкова, Анастасия Сергеевна; Ефимов, Виталий Сергеевич; Сорокин, Иван Александрович; Арутюнян, Зорий Робертович; Сергеев, Никита Сергеевич
    Helium isotope exchange in tungsten during sequential irradiation by 3He and 4He ions at room temperature was investigated. Tungsten samples were irradiated in two ways: by 3 keV mass-separated ion beams, or by low energy ions in plasma discharge. The He amount in W after irradiation was measured using ex-situ (up to 2500 K) thermal desorption spectroscopy. Despite the very high binding energy of He with lattice defects in W, a very high efficiency of He isotope exchange was observed.
  • Публикация
    Открытый доступ
    ВЛИЯНИЕ ГЕЛИЯ НА НАКОПЛЕНИЕ ДЕЙТЕРИЯ В СООСАЖДЕННЫХ ВОЛЬФРАМОВЫХ ПЛЁНКАХ
    (НИЯУ МИФИ, 2021) Крат, С. А.; Фефелова, Е. А.; Пришвицын, А. С.; Гаспарян, Ю. М.; Писарев, А. А.; Гаспарян, Юрий Микаэлович; Пришвицын, Александр Сергеевич; Крат, Степан Андреевич
    В ИТЭР в качестве топлива будет использоваться дейтерий-тритиевая смесь, накопление радиоактивного трития в материалах стенки реактора представляет проблему с точки зрения радиационной безопасности. Одним из основных механизмов накопления изотопов водорода в реакторе является соосаждение с материалами обращенных к плазме элементов (ОПЭ) [1,2]. В ИТЭР в качестве материала наиболее нагруженной области первой стенки – дивертора, выбран вольфрам. Понимание процесса соосаждения изотопов водорода с этим металлом необходимо для количественной оценки удержания трития в ОПЭ.
  • Публикация
    Открытый доступ
    SURFACE MODIFICATIONS OF W-BASED MATERIALS UNDER HELIUM AND DEUTERIUM ION IMPLANTATION
    (НИЯУ МИФИ, 2021) Ogorodnikova, O. V.; Klimov, N. S.; Gasparyan, Yu. M.; Harutyunyan, Z. R.; Efimov, V. S.; Kovalenko, D.; Gutarov, K.; Poskakalov, А. G.; Kharkov, M. M.; Kaziev, A. V.; Харьков, Максим Михайлович; Гаспарян, Юрий Микаэлович; Казиев, Андрей Викторович; Ефимов, Виталий Сергеевич; Огородникова, Ольга Вячеславовна
    In a thermonuclear reactor, materials will be irradiated with hydrogen isotopes and helium (He), neutrons, and heat fluxes. Tungsten (W) and dense nano-structured tungsten (CMSII) coatings are used as plasma-facing materials in current tokamaks and suggested to be used for future fusion devices. In this regard, the study of the accumulation of He and deuterium (D) in W based materials and corresponding surface modifications under normal operation conditions and transient events appears necessary for assessment of safety of fusion reactor due to the radioactivity of tritium and material performance and for the plasma fuel balance. Therefore, in this work, irradiation of W-based materials with D and He ions in stationary regime and in quasi-stationary high-current plasma gun QSPA-T below and above the melting threshold has been performed. In QSPA-T, a pulse duration was 1 ms and number of pulses was varied from one to thirty. In stationary plasma loads, ion energy was varied from 20 to 3 keV, temperature 300-1200 K and flux/fluence 1017-1021 at/m2s/1020-1025 at/m2.
  • Публикация
    Открытый доступ
    APPLICATION OF LIBS, LA-QMS, LA-TOF-MS FOR FUSION RELEVANT MATERIALS ANALYSIS
    (НИЯУ МИФИ, 2021) Efimov, N. E.; Sinelnikov, D. N.; Bulgadaryan, D. G.; Gasparyan, Y. M.; Vovchenko, E. D.; Marenkov, E. D.; Маренков, Евгений Дмитриевич; Ефимов, Никита Евгеньевич; Вовченко, Евгений Дмитриевич; Синельников, Дмитрий Николаевич; Гаспарян, Юрий Микаэлович
    One of the critical issues on the way to controlled nuclear fusion is related to plasma wall interaction. Such interaction leads to co-deposition of hydrogen isotopes together with eroded first wall materials. It is known that the deuterium-tritium (DT) mixture will be used in ITER and future fusion devices as a fuel. So as the accumulation of radioactive tritium in the machines is limited by the nuclear license, there is a need for some remote fuel retention monitoring system. In current devices, the total fuel amount is determined from the gas balance (difference between input and output flows) measurements and from a post mortem analysis of plasmafacing components. One of the most promising techniques which can be applied in situ in tokamaks is based on laser irradiation of the surface of interest followed by mass- or optical spectroscopy. Such a technique was already applied in TEXTOR tokamak to the hydrogenic carbon layers [1], and it is included in the task list of ITER with a high priority.
  • Публикация
    Открытый доступ
    ВЛИЯНИЕ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ НА СОДЕРЖАНИЕ И ДЕСОРБЦИЮ ДЕЙТЕРИЯ ИЗ СООСАЖДЕННЫХ ЛИТИЕВЫХ СЛОЕВ
    (НИЯУ МИФИ, 2021) Хомяков, А. К.; Крат, С. А.; Пришвицын, А. С.; Фефёлова, Е. А.; Гаспарян, Ю. М.; Писарев, А. А.; Писарев, Александр Александрович; Пришвицын, Александр Сергеевич; Гаспарян, Юрий Микаэлович; Крат, Степан Андреевич
    The influence of ultraviolet irradiation of co-deposited lithium layers on the content and desorption of deuterium from them is considered. It was found that exposure to ultraviolet radiation suppresses desorption at high temperatures, facilitates desorption at low temperatures. Effects are considered that can form the basis for the development of methods for determining the places of accumulation of lithium hydride in tokamaks with lithium walls, as well as facilitating the removal of heavy hydrogen isotopes from the walls of installations.
  • Публикация
    Открытый доступ
    Deuterium trapping in co-deposited layers of ITER-relevant materials
    (НИЯУ МИФИ, 2021) Krat, S. A.; Prishvitsyn, A. S.; Vasina, Ya. A.; Fefelova, E. A.; Gasparyan, Yu. M.; Pisarev, A. A.; Писарев, Александр Александрович; Гаспарян, Юрий Микаэлович; Крат, Степан Андреевич; Пришвицын, Александр Сергеевич
    Hydrogen isotope accumulation in fusion devices is a serious problem. Because deuterium-tritium mixture will be a working gas in future fusion devices, including ITER tokamak, tritium accumulation is an issue from the perspective of radiation safety. In total, only 700 grams of tritium are allowed to be present in ITER vessel at any time, with additional 120 in the cryopumps, and 180 grams allocated to measurement error, to the total of 1000 grams.
  • Публикация
    Открытый доступ
    HELIUM THERMAL DESORPTION FROM TUNGSTEN AFTER ION BEAM IRRADIATION AT ELEVATED TEMPERATURES
    (НИЯУ МИФИ, 2019) Ryabtsev, S. A.; Gasparyan, Yu. M.; Harutyunyan, Z. R.; Efimov, V. S.; Aksenova, A. S.; Pisarev, A. A.; Писарев, Александр Александрович; Ефимов, Виталий Сергеевич; Гаспарян, Юрий Микаэлович; Арутюнян, Зорий Робертович
    Helium (He) is a product of deuterium-tritium reaction, so appearance of helium impurities will be unavoidable. In addition to He implantation from fusion plasma, He can be introduced into material by both neutron irradiation and tritium radioactive decay. Presence of He in plasma-facing materials may significantly influence their mechanical properties and surface morphology [1, 2], as well as hydrogen isotope recycling [3, 4]. Tungsten (W) will be used as a plasma-facing material in ITER divertor [5], and it is considered also for application in future fusion devices. Therefore, investigation of He interaction with W is of great interest.
  • Публикация
    Открытый доступ
    MODELING OF CO-DEPOSITION OF HYDROGEN WITH SPUTTERED METALS
    (НИЯУ МИФИ, 2019) Krat, S.; Gasparyan, Yu.; Vasina, Ya.; Prishvytsin, A.; Pisarev, A.; Крат, Степан Андреевич; Гаспарян, Юрий Микаэлович
    Hydrogen accumulation in fusion devices is a serious issue from the viewpoint of radiation safety, as the total amount of radioactive tritium is strictly controlled. It also affects plasma parameters, as hydrogen accumulated in the device can be released during the discharge due to the plasma-wall interaction. One of the main channels for hydrogen accumulation is co-deposition, wherein hydrogen is deposited onto a surface together with particles of the wall material previously eroded from some other area of the fusion device’s wall by plasma. Such co-deposition can lead to accumulation of thick layers of material containing large amounts of hydrogen in hard to reach areas of the installations, such as pump lines or shadowed areas of the divertor in tokamak devices. The hydrogen content in such codeposited layers can reach tens of atomic percent, and, in the case of hydrogen active materials, such as carbon, even exceed unity. Hydrogen content in such films depends strongly on a number of co-deposition parameters, such as the deposition rate, temperature of the surface on which co-deposition occurs, hydrogen flux to the surface during deposition and others. This makes purely empirical approach to prediction of hydrogen accumulation in codeposited layers in fusion devices very difficult requiring exhaustive experimental testing in the full range of parameters that can occur in fusion devices. Such approach is not always feasible or economically viable, especially when attempting to predict hydrogen accumulation in future devices. Because of this, an approach is preferable that could provide quantitative predictions via computationally cheap predictive modeling of plasma-wall interactions.