Персона:
Гаспарян, Юрий Микаэлович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Руководитель научной группы "Плазменные и лазерные технологии новых материалов для ядерной и термоядерной энергетики"
Руководитель научной группы -Международный центр ядерных компетенций (МЦЯДКОМ)
Фамилия
Гаспарян
Имя
Юрий Микаэлович
Имя

Результаты поиска

Теперь показываю 1 - 6 из 6
  • Публикация
    Открытый доступ
    ОДНОВРЕМЕННОЕ СО-ОСАЖДЕНИЕ НЕСКОЛЬКИХ ИЗОТОПОВ ВОДОРОДА С МЕТАЛЛАМИ
    (НИЯУ МИФИ, 2023) Крат, С. А.; Пришвицын, А. С.; Гаспарян, Ю. М.; Крат, Степан Андреевич; Гаспарян, Юрий Микаэлович; Пришвицын, Александр Сергеевич
    Hydrogen isotope accumulation in fusion devices is an important issue. It affects installation operation parameters, such as hydrogen recycling. It is also of vital importance from the perspective of radiation safety, when the isotope in question is radioactive tritium. Only 700 grams of tritium are allowed in ITER tokamak at any one time.
  • Публикация
    Открытый доступ
    ВЛИЯНИЕ ГЕЛИЯ НА НАКОПЛЕНИЕ ДЕЙТЕРИЯ В СООСАЖДЕННЫХ ВОЛЬФРАМОВЫХ ПЛЁНКАХ
    (НИЯУ МИФИ, 2021) Крат, С. А.; Фефелова, Е. А.; Пришвицын, А. С.; Гаспарян, Ю. М.; Писарев, А. А.; Гаспарян, Юрий Микаэлович; Пришвицын, Александр Сергеевич; Крат, Степан Андреевич
    В ИТЭР в качестве топлива будет использоваться дейтерий-тритиевая смесь, накопление радиоактивного трития в материалах стенки реактора представляет проблему с точки зрения радиационной безопасности. Одним из основных механизмов накопления изотопов водорода в реакторе является соосаждение с материалами обращенных к плазме элементов (ОПЭ) [1,2]. В ИТЭР в качестве материала наиболее нагруженной области первой стенки – дивертора, выбран вольфрам. Понимание процесса соосаждения изотопов водорода с этим металлом необходимо для количественной оценки удержания трития в ОПЭ.
  • Публикация
    Открытый доступ
    ВЛИЯНИЕ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ НА СОДЕРЖАНИЕ И ДЕСОРБЦИЮ ДЕЙТЕРИЯ ИЗ СООСАЖДЕННЫХ ЛИТИЕВЫХ СЛОЕВ
    (НИЯУ МИФИ, 2021) Хомяков, А. К.; Крат, С. А.; Пришвицын, А. С.; Фефёлова, Е. А.; Гаспарян, Ю. М.; Писарев, А. А.; Писарев, Александр Александрович; Пришвицын, Александр Сергеевич; Гаспарян, Юрий Микаэлович; Крат, Степан Андреевич
    The influence of ultraviolet irradiation of co-deposited lithium layers on the content and desorption of deuterium from them is considered. It was found that exposure to ultraviolet radiation suppresses desorption at high temperatures, facilitates desorption at low temperatures. Effects are considered that can form the basis for the development of methods for determining the places of accumulation of lithium hydride in tokamaks with lithium walls, as well as facilitating the removal of heavy hydrogen isotopes from the walls of installations.
  • Публикация
    Открытый доступ
    Deuterium trapping in co-deposited layers of ITER-relevant materials
    (НИЯУ МИФИ, 2021) Krat, S. A.; Prishvitsyn, A. S.; Vasina, Ya. A.; Fefelova, E. A.; Gasparyan, Yu. M.; Pisarev, A. A.; Писарев, Александр Александрович; Гаспарян, Юрий Микаэлович; Крат, Степан Андреевич; Пришвицын, Александр Сергеевич
    Hydrogen isotope accumulation in fusion devices is a serious problem. Because deuterium-tritium mixture will be a working gas in future fusion devices, including ITER tokamak, tritium accumulation is an issue from the perspective of radiation safety. In total, only 700 grams of tritium are allowed to be present in ITER vessel at any time, with additional 120 in the cryopumps, and 180 grams allocated to measurement error, to the total of 1000 grams.
  • Публикация
    Открытый доступ
    MODELING OF CO-DEPOSITION OF HYDROGEN WITH SPUTTERED METALS
    (НИЯУ МИФИ, 2019) Krat, S.; Gasparyan, Yu.; Vasina, Ya.; Prishvytsin, A.; Pisarev, A.; Крат, Степан Андреевич; Гаспарян, Юрий Микаэлович
    Hydrogen accumulation in fusion devices is a serious issue from the viewpoint of radiation safety, as the total amount of radioactive tritium is strictly controlled. It also affects plasma parameters, as hydrogen accumulated in the device can be released during the discharge due to the plasma-wall interaction. One of the main channels for hydrogen accumulation is co-deposition, wherein hydrogen is deposited onto a surface together with particles of the wall material previously eroded from some other area of the fusion device’s wall by plasma. Such co-deposition can lead to accumulation of thick layers of material containing large amounts of hydrogen in hard to reach areas of the installations, such as pump lines or shadowed areas of the divertor in tokamak devices. The hydrogen content in such codeposited layers can reach tens of atomic percent, and, in the case of hydrogen active materials, such as carbon, even exceed unity. Hydrogen content in such films depends strongly on a number of co-deposition parameters, such as the deposition rate, temperature of the surface on which co-deposition occurs, hydrogen flux to the surface during deposition and others. This makes purely empirical approach to prediction of hydrogen accumulation in codeposited layers in fusion devices very difficult requiring exhaustive experimental testing in the full range of parameters that can occur in fusion devices. Such approach is not always feasible or economically viable, especially when attempting to predict hydrogen accumulation in future devices. Because of this, an approach is preferable that could provide quantitative predictions via computationally cheap predictive modeling of plasma-wall interactions.
  • Публикация
    Открытый доступ
    HYDROGEN CO-DEPOSITION WITH METALS IN PLASMA DISCHARGE
    (НИЯУ МИФИ, 2017) Krat, S. A.; Gasparyan, Yu. M.; Vasina, Ya. A.; Pisarev, A. A.; Писарев, Александр Александрович; Крат, Степан Андреевич; Гаспарян, Юрий Микаэлович
    Deposition of a single element film is always accompanied by co-deposition of a certain amount of other elements. This can be done properly to improve properties of the coating or due to contamination by impurities. In the field of thermonuclear fusion research, where hydrogen isotopes are used as a fuel, co-deposition with sputtered material from the wall is one of major mechanisms of hydrogen isotopes accumulation in the installation. Since D-T fuel will be used in ITER and future fusion reactors, accumulation of radioactive tritium will limit the lifespan of the installations due to safety concerns. For example, tritium accumulation in ITER is limited by 1 kg. This is why carbon materials were not accepted for the use in ITER. Basing on experiments, it was predicted that the safety limit could be reached after 100 of shots with tritium. Recent experiments in JET [1] demonstrated in the case of “ITER-like” wall (first wall – Be, divertor area - tungsten) accumulation of deuterium fuel in the co-deposits was 20 times lower than in the full-carbon wall campaign. This is both due to smaller amount of co-deposits and smaller concentration of deuterium in them.