Персона: Максутов, Артем Артурович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Статус
Фамилия
Максутов
Имя
Артем Артурович
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияТолько метаданныеKnowledge Base Collecting Using Natural Language Processing Algorithms(2020) Maksutov, A. A.; Zamyatovskiy, V. I.; Vyunnikov, V. N.; Kutuzov, A. V.; Максутов, Артем Артурович© 2020 IEEE.Natural language processing (NLP) is one of the most complicated and fast developing area in Computer Science. There are solutions in this area for special cases, but developing one general solution is impossible due to variety of grammatical, syntactic and semantic forms in different languages. The NLP algorithms and methods are used in speech recognition, text analyzing and understanding, speech generation. This paper is focused on application of NLP approaches to understand quasistructured or unstructured data with subsequent inclusion in a knowledge base. The article covers the usage of a graph database as a knowledge base, that allows to show and visualize relationships between different pieces of text according to specified data patterns.
- ПубликацияТолько метаданныеThe Transformer Neural Network Architecture for Part-of-Speech Tagging(2021) Maksutov, A. A.; Zamyatovskiy, V. I.; Morozov, V. O.; Dmitriev, S. O.; Максутов, Артем Артурович; Дмитриев, Святослав Олегович© 2021 IEEE.Part-of-speech tagging (POS tagging) is one of the most important tasks in natural language processing. This process implies determining part of speech and assigning an appropriate tag for each word in given sentence. The resulting tag sequence can be used as is and as a part of more complicated tasks, such as dependency and constituency parsing. This task belongs to sequence-to-sequence tasks and multilayer bidirectional LSTM networks are commonly used for POS tagging. Such networks are rather slow in terms of training and processing large amounts of information due to sequential computation of each timestamp from the input sequence. This paper is focused on developing an accurate model for POS tagging that uses the original Transformer neural network architecture.