Персона:
Кочетков, Юрий Владимирович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Кочетков
Имя
Юрий Владимирович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 11
  • Публикация
    Только метаданные
    Elaboration of 3-frame complex interferometry for optimization studies of capacitor-coil optical magnetic field generators
    (2019) Pisarczyk, T.; Santos, J. J.; Dudzak, R.; Zaras-Szydowska, A.; Gus'kov, S. Y.; Korneev, P.; Kochetkov, I.; Корнеев, Филипп Александрович; Кочетков, Юрий Владимирович
    Recently developed three-frame complex-interferometry system driven by a Ti:Sa laser with 40 fs pulse has been installed at the PALS (Prague Asterix Laser System) laser facility. This unique diagnostic allows for the first time to perform simultaneous measurements of B-field in the coil region of the capacitor-coil targets (CCT) and the self-generated B-field (SMF) of the diode plasma in between the CCT-plates. CCT were irradiated by the PALS iodine laser (lambda = 1315 nm) with energy in the range 250-500 J and pulse duration of 350 ps at full width at half maximum. The operation of this diagnostic system and methodologies for quantitative data analysis are presented in this study, including: (i) obtaining information about the induction of the magnetic field in the CCT coil based on measurements of the Faraday effect in the TGG (Terbium Gallium Garnet) paramagnetic crystal at the coil vicinity and (ii) determining magnetic field and current density distributions in the capacitor region of the CCT by analysis of the complex interferograms. The preliminary measurements confirmed the high potential of the reported setup for optimization studies of CCT targets.
  • Публикация
    Только метаданные
    2D MHD simulation of spontaneous magnetic fields generated during interaction of 1315.2-nm laser radiation with copper slabs at 1016 W/cm2
    (2021) Jach, K.; Pisarczyk, T.; Stepniewski, W.; Swierczynski, R.; Kochetkov, I. U.; Кочетков, Юрий Владимирович
    © 2021 Author(s).Multidimensional modeling of phenomena and processes occurring during the expansion of the laser-produced plasma for different irradiation conditions related to both the laser beam parameters and the target constructions is a very complex issue, especially when modeling requires consideration of kinetic processes associated with the development of various types of microscopic instability. Multidimensional PIC codes create such a possibility, but their use is limited to modeling phenomena even in a very narrow timescale due to the limited computational capabilities of current supercomputers. For this reason, the paper attempts to interpret the results of the spontaneous magnetic field (SMF) measurements obtained during the PALS (Prague Asterix Laser System) experiment [Pisarczyk et al., AIP Adv. 10, 115201 (2020); Pisarczyk et al., Phys. Plasmas 22, 102706 (2015)] based on the 2D magneto-hydrodynamic (MHD) model [Jach et al., Computer Modeling of Dynamic Interaction of Bodies by Free Point Method (PWN, Warsaw, 2011)]. The MHD equations were used with included arbitrary (i) current of hot electrons treating it as an additional external current and (ii) ion-sound instability responsible for the increase in anomalous resistance in areas with high temperature and low-density plasma. The spatial distribution of magnetic fields and current density obtained from 2D modeling are in acceptable agreement with the experimental results [Pisarczyk et al., Plasma Phys. Controlled Fusion 62, 115020 (2020); Zaraś-Szydłowska et al., AIP Adv. 10, 115201 (2020); Pisarczyk et al., Phys. Plasmas 22, 102706 (2015)]. The inclusion of temporal changes in anomalous resistance in modeling allowed us to explain the persistence of high SMF amplitude at the level of several megagauss after the laser pulse ended due to the effect of magnetic field freezing.
  • Публикация
    Только метаданные
    Electron accelerator driven by 1TW femtosecond laser pulses: Targetry, principles and prospects
    (2024) Ivanov, K. A.; Tsymbalov, I. N.; Gorlova, D. A.; Kochetkov, Yu. V.; Кочетков, Юрий Владимирович
  • Публикация
    Только метаданные
    Hot electron retention in laser plasma created under terawatt subnanosecond irradiation of Cu targets
    (2020) Pisarczyk, T.; Kalal, M.; Gus'kov, S. Y.; Batani, D.; Kochetkov, I.; Korneev, P.; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович
    Laser plasma created by intense light interaction with matter plays an important role in high-energy density fundamental studies and many prospective applications. Terawatt laser-produced plasma related to the low collisional and relativistic domain may form supersonic flows and is prone to the generation of strong spontaneous magnetic fields. The comprehensive experimental study presented in this work provides a reference point for the theoretical description of laser-plasma interaction, focusing on the hot electron generation. It experimentally quantifies the phenomenon of hot electron retention, which serves as a boundary condition for most plasma expansion models. Hot electrons, being responsible for nonlocal thermal and electric conductivities, are important for a large variety of processes in such plasmas. The multiple-frame complex-interferometric data providing information on time resolved spontaneous magnetic fields and electron density distribution, complemented by particle spectra and x-ray measurements, were obtained under irradiation of the planar massive Cu and plastic-coated targets by the iodine laser pulse with an intensity of above 10(16)W cm(-2). The data shows that the hot electron emission from the interaction region outside the target is strongly suppressed, while the electron flow inside the target,i.e.in the direction of the incident laser beam, is a dominant process and contains almost the whole hot electron population. The obtained quantitative characterization of this phenomenon is of primary importance for plasma applications spanning from ICF to laser-driven discharge magnetic field generators.
  • Публикация
    Только метаданные
    Complex interferometry of magnetized plasma: Accuracy and limitations
    (2021) Pisarczyk, T.; Kalal, M.; Chodukowski, T.; Zaras-Szydlowska, A.; Kochetkov, I.; Korneev, P.; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович
    © 2021 Author(s).Expanding laser plasmas, produced by high energy laser radiation, possess both high thermal and magnetic field energy densities. Characterization of such plasma is challenging but may provide essential information needed for understanding its physical behavior. Among the standard experimental techniques used for plasma diagnostics, conventional interferometry is one of the most convenient, informative, and accurate. Attempts to extract more information from each laser shot on large facilities have led to development of complex interferometry, which allows us to reconstruct both plasma electron density and magnetic field distributions from a single data object. However, such a benefit requires more accurate processing, critically important in some situations. This work focuses on quasi-axisymmetric interaction geometry. Starting from basic principles, we present a general analysis, consider main error sources, and obtain plasma density and magnetic field distributions with their derived error bars. A regularization procedure, significantly decreasing an error near the plasma symmetry axis, is proposed and analyzed in detail. With use of synthetic datasets, the presented analysis is generally universal for quasi-axisymmetric plasmas.
  • Публикация
    Только метаданные
    Kilotesla plasmoid formation by a trapped relativistic laser beam
    (2022) Ehret, M.; Kochetkov, Y.; Bukharskii, N.; Stepanishchev, V.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович
    A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters. The proposed setup is suited for perspective highly magnetized plasma application and fundamental studies. © 2022 American Physical Society.
  • Публикация
    Только метаданные
    Multi MeV high charge electron beam source utilizing 1 TW laser and shock wave in gas jet target
    (2022) Ivanov, K. A.; Tsymbalov, I. N.; Gorlova, D. A.; Shulyapov, S. A.; Tsygvintsev, I. P.; Kochetkov, Yu. V.; Volkov, R. V.; Savel'ev, A. B.; Кочетков, Юрий Владимирович
    The high charge electron beam is generated at interaction of 1 TW laser pulse with gas target tailored by nanosecond prepulse forming a shock wave. Propagation of intense femtosecond pulse through complex plasma slab accelerates electrons up to 10 MeV. The debris free target has potential to kHz laser application and electrons energy enhancement using more powerful femtosecond laser pulse. © 2022 IEEE.
  • Публикация
    Только метаданные
    Investigation of spontaneous magnetic fields, electron and ion emission in laser-produced plasma experiments at PALS
    (2019) Pisarczyk, T.; Batani, D.; Dudzak, R.; Zaras-Szydlowska, A.; Gus'kov, S. Yu.; Korneev, P. h.; Kochetkov, J.; Martynenko, A. S.; Корнеев, Филипп Александрович; Кочетков, Юрий Владимирович
  • Публикация
    Только метаданные
    Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
    (2022) Kochetkov, I. V.; Bukharskii, N. D.; Ehret, M.; Kuznetsov, A.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Кузнецов, Андрей Петрович; Корнеев, Филипп Александрович
    Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit. © 2022, The Author(s).
  • Публикация
    Только метаданные
    Investigation of magnetized plasma created in snail targets at the PALS facility
    (2022) Pisarczyk, T.; Renner, O.; Dudzak, R.; Chodukowski, T.; Kochetkov, I.; Korneev, P.; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович