Персона:
Аксенов, Виктор Серафимович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Аксенов
Имя
Виктор Серафимович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 17
  • Публикация
    Только метаданные
    Rocket Engine with Continuously Rotating Liquid-Film Detonation
    (2020) Gusev, P. A.; Zelensky, V. A.; Evstratov, E. V.; Alymov, M. I.; Frolov, S. M.; Shamshin, I. O.; Aksenov, V. S.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    © 2018, © 2018 Taylor & Francis. The possibility of organizing a continuous-detonation combustion of a liquid fuel film in an annular combustor of a detonation liquid-propellant rocket engine has been demonstrated. The near-limit mode of the longitudinally pulsating “film” detonation and the continuous spinning “film” detonation modes with one and two detonation waves circulating in the annular gap of the combustor are recorded in the fire tests.
  • Публикация
    Только метаданные
    Pulsed detonation hydroramjet: simulations and experiments
    (2020) Avdeev, K. A.; Frolov, F. S.; Sadykov, I. A.; Tukhvatullina, R. R.; Frolov, S. M.; Aksenov, V. S.; Shamshin, I. O.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.A water transportation engine of a new type—a pulsed detonation hydroramjet (PDH)—has been designed, manufactured, and tested. The PDH is a pulsed detonation tube (DT) inserted in an open-ended water guide. The thrust is developed by shock-induced pulsed water jets periodically emanating from the water guide nozzle. Numerical simulations indicate that valveless and valved PDH models can produce thrust with the specific impulse on the level ranging from 600 to 2400 s. Test firings of PDH models of various designs with a 2-liter DT were carried out on a specially designed test rig, which provides the approaching water flow in the form of a submerged jet at a speed of up to 10 m/s. The measured average specific impulse of valveless and valved PDH models was on the level of 350–400 s when the first operation cycle was not considered. The measured values of the average thrust and specific impulse in the first operation cycle were shown to be always much higher than those in the subsequent cycles: In the tests, the average value of thrust in the first cycle varied from 300 to 480 N, and the value of the specific impulse varied from 960 to 2690 s, which indicates the potential of increasing the thrust performance.
  • Публикация
    Только метаданные
    Detonability of fuel–air mixtures
    (2020) Zvegintsev, V. I.; Bilera, I. V.; Kazachenko, M. V.; Shamshin, I. O.; Frolov, S. M.; Aksenov, V. S.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.A new experimental method for evaluating the detonability of fuel–air mixtures (FAMs) based on measuring the deflagration-to-detonation (DDT) run-up distance and/or time in a standard pulse detonation tube (SDT) is used to rank gaseous premixed and non-premixed FAMs by their detonability under substantially identical thermodynamic and gasdynamic conditions. In the experiments, FAMs based on hydrogen, acetylene, ethylene, propylene, propane–butane, n-pentane, and natural gas of various compositions, as well as FAMs based on the gaseous pyrolysis products of polypropylene (PP), are used: from extremely fuel-lean to extremely fuel-rich at normal temperatures and pressures. The concept of equivalent FAMs exhibiting the same or similar detonability under the same conditions is proposed. Equivalent FAMs can be used for predictive physical modeling of detonation processes involving FAMs of other fuels. The ranking of FAMs in terms of their relative detonability allows choosing a propylene FAM for physical modeling of the operation process in the PP-fueled solid-fuel ramjets operating on detonative combustion.
  • Публикация
    Только метаданные
    Deflagration-to-Detonation Transition in Air Mixtures of Polypropylene Pyrolysis Products
    (2019) Zvegintsev, V. I.; Bilera, I. V.; Kazachenko, V. M.; Shamshin, I. O.; Frolov, S. M.; Aksenov, V. S.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    © 2019, Pleiades Publishing, Ltd.Abstract: A new method to determine fuel detonability has been proposed, which is based on measuring the length and time of a deflagration-to-detonation transition (DDT) in a calibration pulsed-detonation wind tunnel (CPDWT). The fuel was polypropylene granules (PG). A test stand was designed and built, which included the CPDWT and a gas generator to obtain PG pyrolysis products (PGPP) at a decomposition temperature to 800°C. Experiments for studying DDT in PGPP–air mixtures were carried out. It was shown that the detonability of PGPP is close to that of a stoichiometric mixture of autogas liquefied petroleum gas with air under normal conditions.
  • Публикация
    Только метаданные
    Pulsed Detonation Hydroramjet: Design Optimization
    (2022) Frolov, S. M.; Avdeev, K. A.; Aksenov, V. S.; Frolov, F. S.; Sadykov, I. A.; Shamshin, I. O.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    A new type of marine transportation engine, the pulsed detonation hydroramjet (PDH), which was first designed, manufactured, and tested by the present authors, has been further investigated in terms of the potential improvement of its propulsive performance. PDH is composed of a pulsed detonation tube (DT) inserted in the flow-through water guide. Thrust is developed by shock-induced pulsed water jets which are periodically emitted from the water guide nozzle. The measured values of the time-averaged thrust and specific impulse in the first operation cycle were shown to always be considerably higher than those in subsequent cycles, indicating the possibility of improving the overall thrust performance. The present manuscript is aimed at clarifying the reasons for, and eliminating, cycle-to-cycle variability during PDH operation, as well as optimization of the PDH design. An experimental model of the PDH with an optically transparent water guide was designed and manufactured. The cycle-to-cycle variability was found to be caused by the overexpansion of gaseous detonation products in the DT due to the inertia of water column in the water guide. Gas overexpansion caused the reverse flow of the gas–water mixture which filled the water guide and penetrated the DT, thus exerting a strong effect on PDH operation. To eliminate the cycle-to-cycle variability, a new PDH model was developed, manufactured, and tested. The model was equipped with a passive flap valve and active rotary valve and operated on the stochiometric propane–oxygen mixture. Its test firing showed that use of the valves made it possible to eliminate the cycle-to-cycle variability and nearly double the time-averaged thrust and specific impulse reaching 40 N and 550 s, respectively.
  • Публикация
    Только метаданные
    Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
    (2022) Frolov, S. M.; Avdeev, K. A.; Aksenov, V. S.; Sadykov, I. A.; Shamshin, I. O.; Frolov, F. S.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    A compressible medium represented by pure water saturated by small nonreactive or reactive gas bubbles can be used for generating a propulsive force in large-, medium-, and small-scale thrusters referred to as a pulsed detonation hydroramjet (PDH), which is a novel device for underwater propulsion. The PDH thrust is produced due to the acceleration of bubbly water (BW) in a water guide by periodic shock waves (SWs) and product gas jets generated by pulsed detonations of a fuel-oxidizer mixture. Theoretically, the PDH thrust is proportional to the operation frequency, which depends on both the SW velocity in BW and pulsed detonation frequency. The studies reported in this manuscript were aimed at exploring two possible directions of the improvement of thruster performances, namely, (1) the replacement of chemically nonreacting gas bubbles by chemically reactive ones, and (2) the increase in the pulsed detonation frequency from tens of hertz to some kilohertz. To better understand the SW-to-BW momentum transfer, the interaction of a single SW and a high-frequency (≈7 kHz) sequence of three SWs with chemically inert or active BW containing bubbles of air or stoichiometric acetylene-oxygen mixture was studied experimentally. Single SWs and SW packages were generated by burning or detonating a gaseous stoichiometric acetylene-oxygen or propane-oxygen mixture and transmitting the arising SWs to BW. The initial volume fraction of gas in BW was varied from 2% to 16% with gas bubbles 1.5-4 mm in diameter. The propagation velocity of SWs in BW ranged from 40 to 580 m/s. In experiments with single SWs in chemically active BW, a detonation-like mode of reaction front propagation ( bubbly quasidetonation ) was realized. This mode consisted of a SW followed by the front of bubble explosions and was characterized by a considerably higher propagation velocity as compared to the chemically inert BW. The latter could allow increasing the PDH operation frequency and thrust. Experiments with high-frequency SW packages showed that on the one hand, the individual SWs quickly merged, feeding each other and increasing the BW velocity, but on the other hand, the initial gas content for each successive SW decreased and, accordingly, the SW-to-BW momentum transfer worsened. Estimates showed that for a small-scale water guide 0.5 m long, the optimal pulsed detonation frequency was about 50-60 Hz.
  • Публикация
    Только метаданные
    Kinetic Model and Experiment for Self-Ignition of Triethylaluminum and Triethylborane Droplets in Air
    (2022) Frolov, S. M.; Aksenov, V. S.; Basevich, V.Y.; Belyaev, A. A.; Shamshin, I. O.; Frolov, F. S.; Storozhenko, P. A.; Guseinov, S. L.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    Triethylaluminum Al(C2H5)3, TEA, and triethylborane, B(C2H5)3, TEB, are transparent, colorless, pyrophoric liquids with boiling points of approximately 190 В°C and 95 В°C, respectively. Upon contact with ambient air, TEA, TEB, as well as their mixtures and solutions, in hydrocarbon solvents, ignite. They can also violently react with water. TEA and TEB can be used as hypergolic rocket propellants and incendiary compositions. In this manuscript, a novel scheme of the heterogeneous interaction of gaseous oxygen with liquid TEA/TEB microdroplets accompanied by the release of light hydrocarbon radicals into the gas phase is used for calculating the self-ignition of a spatially homogeneous mixture of fuel microdroplets in ambient air at normal pressure and temperature (NPT) conditions. In the primary initiation step, TEA and TEB react with oxygen, producing an ethyl radical, which can initiate an autoxidation chain. The ignition delay is shown to decrease with the decrease in the droplet size. Preliminary experiments on the self-ignition of pulsed and continuous TEA-TEB sprays in ambient air at NPT conditions are used for estimating the Arrhenius parameters of the rate-limiting reaction. Experiments confirm that the self-ignition delay of TEA-TEB sprays decreases with the injection pressure and provide the data for estimating the activation energy of the rate-limiting reaction, which appears to be close to 2 kcal/mol.
  • Публикация
    Только метаданные
    Deflagration-to-detonation Transition in Stratified Oxygen–Liquid Fuel Film Systems
    (2022) Shamshin, I. O.; Frolov, S. M.; Aksenov, V. S.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    © 2021 Taylor and Francis Group, LLC.Deflagration-to-detonation transition (DDT) in gas (oxygen)–liquid n-heptane film and gas (oxygen)–liquid n-decane film systems is registered experimentally using a fused or exploding wire as a weak ignition source that generates a primary shock wave with a Mach number ranging from 1.02 to 1.6. In a straight smooth-walled channel of rectangular cross section 54 × 24 mm, 3 and 6 m long with one open end, the DDT is obtained at distances 900 to 4000 mm from the ignition source 3 to 1700 ms after ignition. The DDT is obtained for n-heptane and n-decane films 0.2 to 0.7 mm thick, which corresponds to the overall fuel-to-oxygen equivalence ratios of 15 to 40. The registered detonation velocities range from 1400 to 2000 m/s. In several experiments, a high-velocity quasi-stationary deflagration front propagating at an average velocity of 700–1100 m/s is recorded. The structure of this front includes the leading shock wave followed by the reaction zone separated from each other by a time delay of 90 to 190 μs. The results obtained are important for explosion safety and for better understanding of the operation process in the continuous-detonation and pulse-detonation combustors of advanced rocket and air-breathing engines with the supply of liquid fuel in the form of a wall film.
  • Публикация
    Только метаданные
    Air-breathing pulsed detonation thrust module: Numerical simulations and firing tests
    (2019) Zangiev, A. E.; Frolov, S. M.; Aksenov, V. S.; Ivanov, V. S.; Shamshin, I. O.; Фролов, Сергей Михайлович; Аксенов, Виктор Серафимович
    © 2019 Elsevier Masson SAS The air-breathing pulsed detonation thrust module (TM) for an aircraft designed for a subsonic flight at a speed of up to 120 m/s when operating on a standard aviation kerosene was developed using the analytical estimates and parametric multivariant three-dimensional (3D) calculations. The TM consists of an air intake with a check valve, a fuel supply system, a prechamber-jet ignition system and a combustion chamber with an attached detonation tube. An experimental sample of TM was fabricated, and its firing tests were carried out on a test rig with a thrust-measuring table. In firing tests, TM characteristics are obtained in the form of dependencies of effective thrust, aerodynamic drag and fuel-based specific impulse on fuel consumption at different speeds of the approaching air flow. It has been experimentally shown that the fuel-based specific impulse of the TM reaches 1000-1200 s, and the effective thrust developed by it reaches 180–200 N.
  • Публикация
    Только метаданные
    Mild Detonation Initiation in Rotating Detonation Engines: An Experimental Study of the Deflagration-to-Detonation Transition in a Semiconfined Flat Slit Combustor with Separate Supplies of Fuel and Oxidizer
    (2023) Shamshin, I. O.; Ivanov, V. S.; Aksenov, V. S.; Frolov, S. M.; Аксенов, Виктор Серафимович; Фролов, Сергей Михайлович
    Rotating detonation engines (RDEs) are considered to be promising thrusters for aerospace propulsion. Detonation initiation in RDEs can be accompanied by a destructive explosion of an excess volume of the fuel mixture in the combustor. To exclude this phenomenon, a “mild” rather than “strong” initiation of detonation is required. For the mild initiation of detonation in RDEs, it is necessary to ignite a mixture of a certain minimum volume sufficient for deflagration-to-detonation transition (DDT). In this study, the critical conditions for detonation initiation through DDT in a semiconfined slit combustor simulating the RDE combustor with a separate supply of ethylene and oxygen diluted with nitrogen (from 0 to 40%) were obtained experimentally. It turned out that for the mild initiation of detonation, it is necessary to ignite the mixture upon reaching the critical (minimum) height of the combustible mixture layer. Thus, for the mild initiation of detonation in the undiluted C2H4 + 3O2 mixture filling such a slit combustor, the height of the mixture layer must exceed the slit width by approximately a factor of 12. In terms of the transverse size of the detonation cell λ the minimum layer height of such mixtures in experiments is ~150λ. Compared to the experiments with the premixed composition, the critical height of the layer is 20% larger, which is explained by the finite rate of mixing. As the degree of oxygen dilution with nitrogen increases, the critical height of the layer increases, and the role of finite rate mixing decreases: the results no longer depend on the method of combustible mixture formation.