Персона: Крюкова, Ирина Сергеевна
Email Address
Birth Date
Научные группы
Организационные подразделения
Статус
Фамилия
Имя
Имя
Результаты поиска
Взаимодействие белков сыворотки и плазмы крови человека с полиэлектролитными микрокапсулами различной структуры
2024, Герасимович, Е. С., Нифонтова, Г. О., Крюкова, И. С., Набиев, И., Суханова, А., Герасимович, Евгения Семёновна, Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович
Исследование особенностей взаимодействия систем для адресной доставки лекарств с компонентами биологических жидкостей человека является одним из актуальных направлений в области разработки персонализированных стратегий терапии различных заболеваний человека. Инкапсуляция лекарственных средств в микроносители обеспечивает интактность лекарственных средств и их пролонгированное высвобождение в органе-мишени. Структура и свойства поверхности микроносителей определяют их общую биосовместимость и особенности их взаимодействий с биомолекулами. В представленной работе были получены микрочастицы структуры ядро/полиэлектролитная оболочка и полиэлектролитные микрокапсулы (микрочастицы с растворённым ядром), отличающиеся друг от друга степенью жесткости своей структуры, и проведен анализ их взаимодействий с белками сыворотки и плазмы крови человека. Полученные результаты показали наличие выраженных отличий в профиле белков, связывающихся с поверхностью полиэлектролитных микрочастиц и микрокапсул с различной степенью жесткости.
Гибридные системы на основе фотонных кристаллов из пористого кремния, жидких кристаллов и квантовых точек
2024, Крюкова, И. С., Бобровский, А. Ю., Мартынов, И. Л., Самохвалов, П. С., Набиев, И. Р., Набиев, Игорь Руфаилович, Самохвалов, Павел Сергеевич, Мартынов, Игорь Леонидович, Крюкова, Ирина Сергеевна
Фотонные кристаллы из пористого кремния (ПК) представляют большой интерес для фундаментальных и прикладных исследований. Внедрение люминофоров в эти структуры позволяет управлять их излучательными свойствами, что перспективно для использования в лазерах и дисплеях, а также для исследований взаимодействия света с веществом. В то же время разработка фотонных кристаллов, в которых спектральное положение фотонной запрещенной зоны может быть сдвинуто внешними воздействиями, открывает перспективы для создания новых фотонных и оптоэлектронных материалов. В настоящей работе предложена технология изготовления гибридных систем на основе квантовых точек (КТ) и фотохромной нематической жидкокристаллической (ЖК) смеси, внедренных в микрорезонаторы (МР) из ПК. При внедрении в МР, спектр фотолюминесценции (ФЛ) КТ сужается, что обусловлено эффектом Парселла и слабой связью экситонных переходов в КТ с собственной модой МР из ПК. При воздействии УФ-излучения наблюдается длинноволновый сдвиг спектра ФЛ гибридной структуры, а также обратный сдвиг спектра при облучении видимым светом. Продемонстрированный фотооптический отклик может быть использован для управления ФЛ свойствами гибридных систем и создания на их основе новых фотонных, оптоэлектронных и сенсорных устройств.
Enhancement of the quantum dot photoluminescence using transfer-printed porous silicon microcavities
2020, Kryukova, I. S., Dovzhenko, D. S., Rakovich, Yu. P., Nabiev, I. R., Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович
© 2020 IOP Publishing Ltd.Enhancement of the photoluminescence signal intensity from organic and inorganic fluorophores increases the sensitivity of operation of optical sensors, detectors, and photonic diagnostic assays. Here, we have engineered and compared optical and fluorescence-enhancing properties of two types of one-dimensional porous silicon photonic crystals: a transfer-printed microcavity based on the freestanding photonic crystal and a conventional "one-piece" microcavity created on a monocrystalline silicon substrate. Comparative analysis of the eigenmodes and the photonic bandgaps of both types of microcavities demonstrated a high quality of transfer-printed microcavities and good correlation of their reflection spectra with the spectra of "one-piece" microcavities. Moreover, embedding of a highly concentrated solution of quantum dots (QDs) in the eigenmode localization region of transfer-printed microcavity was followed by three-fold reduction of the full-width-at-half-maximum of their luminescence spectrum at the microcavity eigenmode wavelength, thus confirming a weak coupling regime of QD exciton and microcavity eigenmode interaction and significant enhancement of QD luminescence within the microcavity.
Многослойные полимерные капсулы для адресной доставки противоопухолевых соединений
2024, Калениченко, Д. В., Нифонтова, Г. О., Крюкова, И. С., Суханова, А., Набиев, И., Набиев, Игорь Руфаилович, Крюкова, Ирина Сергеевна, Калениченко, Дарья Владимировна
Разработка систем контролируемой адресной доставки препаратов для персонализированной терапии рака является одной из важнейших задач современной медицины. Контролируемые доставка и высвобождение противоопухолевых препаратов обеспечивают снижение их токсичности для нормальных клеток организма человека и уменьшают побочные эффекты терапии рака. Многослойные полимерные капсулы (МПК) являются перспективными потенциальными кандидатами для разработки систем доставки на их основе. МПК получают с помощью послойной адсорбции противоположно заряженных полиэлектролитов на поверхности заряженного микросубстрата сферической формы. Данный метод позволяет получать МПК различной структуры, функционализировать их противоопухолевыми агентами и направляющими биомолекулами для их адресной доставки к опухоли. В представленной работе описаны основные этапы получения МПК, а также проанализированы факторы, влияющие на эффективность загрузки в МПК противоопухолевого препарата доксорубицина с помощью метода пассивной диффузии.
Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity
2019, Mochalov, Konstantin, Dovzhenko, Dmitriy, Vaskan, Ivan, Kryukova, Irina, Rakovich, Yury, Nabiev, Igor, Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович
Resonance interaction between a localized electromagnetic field and excited states in molecules paves the way to control fundamental properties of a matter. In this study, we encapsulated organic molecules with relatively low unoriented dipole moments in the polymer matrix, placed them in tunable optical microcavity and realized, for the first time, controllable modification of the broad photoluminescence (PL) emission of these molecules in strong coupling regime at room temperature. Notably, while in most previous studies it was reported that the single mode dominates in the PL signal (radiation of the so-called branch of the lower polariton), here we report on the observation of two distinct PL peaks, evolution of which has been followed as the microcavity mode is detuned from the excitonic resonance. A significant Rabi splitting estimated from the modified PL spectra was as large as 225 meV. The developed approach can be used both in fundamental research of resonant light-mater coupling and its practical applications in sensing and development of coherent spontaneous emission sources using a combination of carefully designed microcavity with a wide variety of organic molecules. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Способ регистрации спектров гигантского комбинационного рассеяния света и проточная ячейка для его реализации
2021-05-25, Соколов, П. М., Мочалов, К. Е., Крюкова, И. С., Ракович, Ю. П., Соколов, Павел Михайлович, Крюкова, Ирина Сергеевна
Изобретение относится к области оптической спектроскопии и касается способа регистрации спектров гигантского комбинационного рассеяния света. Способ включает в себя конъюгирование молекул исследуемого образца с магнитными наночастицами и смешивание полученных конъюгатов молекул образца с буфером для проведения анализа. Способ также включает прокачивание конъюгатов молекул образца в буфере через проточную ячейку, фиксацию положения конъюгатов молекул образца в ячейке с помощью магнитного поля, дальнейшее прокачивание буфера для проведения анализа, регистрацию спектров гигантского комбинационного рассеяния света в области фиксации конъюгатов молекул образца, отключение магнитного поля, прокачивание буфера для проведения анализа через проточную ячейку для подачи следующей порции конъюгатов молекул образца или последующего образца. Технический результат заключается в увеличении чувствительности и обеспечении возможности непрерывного автоматизированного анализа различных образцов. 2 н. и 9 з.п. ф-лы, 2 ил.
Enhancement of the photoluminescence of semiconductor nanocrystals in transfer-printed microcavities based on freestanding porous silicon photonic crystals
2020, Kryukova, I. S., Dovzhenko, D. S., Rakovich, Yu. P., Nabiev, I. R., Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович
© Published under licence by IOP Publishing Ltd.Today, lots of research address the phenomenon of interaction between light and matter. In particular, it is of a special interest to investigate light-matter interaction in one-dimensional resonators based on porous materials. In this case, one can embed emitting semiconductor particles into the porous resonator, where the excitons of these particles couple to the resonator eigenmode and luminescence intensity of the emitters is enhanced, allowing an increase in the sensitivity of optical sensors, detectors, and photonic diagnostic assays. A particular challenge is to place the emitters directly in the antinode region of the resonator eigenmode in order to maximize the coupling strength, which is sometimes a problem due to the spatial distribution of emitters away from the eigenmode localization region. Here, we have shown that the transfer-printing technique can be used to obtain structures based on freestanding porous silicon photonic crystals capable of precisely controlling the emitter spatial distribution about the eigenmode localization region. This, as well as the porosity of these structures and high adsorption capacity of porous silicon, allows the light-matter interaction in these hybrid structures to be used in sensing applications. We have shown that the transfer-printing method does not worsen the optical properties of the microcavities compared to the conventional electrochemical etching of the whole microcavity at a time. Furthermore, we have observed slightly better coupling of the exciton of the emitter to the eigenmode of the transfer-printed microcavity in the weak coupling regime.