Персона:
Крюкова, Ирина Сергеевна

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Крюкова
Имя
Ирина Сергеевна
Имя

Результаты поиска

Теперь показываю 1 - 10 из 26
Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Interaction of Serum and Plasma Proteins with Polyelectrolyte Microparticles with Core/Shell and Shell-Only Structures

2024, Gerasimovich, E., Kriukova, I., Shishkov, V. V., Nabiev, I., Герасимович, Евгения Семёновна, Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович

Polyelectrolyte microparticles (MPs) synthesized on calcium carbonate cores are considered a promising basis for new drug delivery systems. It is known that microparticles entering a physiological environment absorb proteins on their surface, which can change the properties of the microparticles and alter their functional activity. This study aimed to compare the compositions of the adsorbed protein layer formed on microparticles with the core/shell and shell structures obtained by layer-by-layer deposition. The difference in the microparticle structure was associated with changes in their surface topography and Ћ?-potential. These microparticles were incubated with human serum or plasma at 37‚шC for 24 h. The adsorbed proteins were eluted and analyzed by means of SDS-PAGE. The protein composition of the eluates was determined by liquid chromatographyў??tandem mass spectrometry (LC-MS/MS); a total of 357 proteins were identified, and 183 of them were detected in all samples. Our results demonstrate that the relative abundance of proteins of different functional groups (immunoglobulins, complement proteins, and apolipoproteins) varied depending on the structure and surface characteristics of the polyelectrolyte microparticles and the incubation medium. Our findings expand the understanding of the influence of the physicochemical properties of the microparticles on their interaction with proteins, which can help to improve the design of microparticles for drug delivery.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Enhancement of the quantum dot photoluminescence using transfer-printed porous silicon microcavities

2020, Kryukova, I. S., Dovzhenko, D. S., Rakovich, Yu. P., Nabiev, I. R., Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович

© 2020 IOP Publishing Ltd.Enhancement of the photoluminescence signal intensity from organic and inorganic fluorophores increases the sensitivity of operation of optical sensors, detectors, and photonic diagnostic assays. Here, we have engineered and compared optical and fluorescence-enhancing properties of two types of one-dimensional porous silicon photonic crystals: a transfer-printed microcavity based on the freestanding photonic crystal and a conventional "one-piece" microcavity created on a monocrystalline silicon substrate. Comparative analysis of the eigenmodes and the photonic bandgaps of both types of microcavities demonstrated a high quality of transfer-printed microcavities and good correlation of their reflection spectra with the spectra of "one-piece" microcavities. Moreover, embedding of a highly concentrated solution of quantum dots (QDs) in the eigenmode localization region of transfer-printed microcavity was followed by three-fold reduction of the full-width-at-half-maximum of their luminescence spectrum at the microcavity eigenmode wavelength, thus confirming a weak coupling regime of QD exciton and microcavity eigenmode interaction and significant enhancement of QD luminescence within the microcavity.

Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Weak Coupling between Light and Matter in Photonic Crystals Based on Porous Silicon Responsible for the Enhancement of Fluorescence of Quantum Dots under Two-Photon Excitation

2020, Kriukova, I. S., Krivenkov, V. A., Samokhvalov, P. S., Nabiev, I. R., Крюкова, Ирина Сергеевна, Самохвалов, Павел Сергеевич, Набиев, Игорь Руфаилович

© 2020, Pleiades Publishing, Inc.The development of optical and, in particular, photoluminescent sensors is currently becoming more and more significant because of their universality, selectivity, and high sensitivity ensuring their wide applications in practice. The efficiency of existing photoluminescent sensors can be increased by using photoluminescent nanomaterials and hybrid nanostructures. For biological applications of photoluminescent sensors, it is extremely relevant to excite photoluminescence in the near infrared spectral range, which allows excluding the effect of autofluorescence of biomolecules and ensuring a deeper penetration of radiation into biological tissues. In this work, it has been studied how the spectral and kinetic parameters of photoluminescence change under two-photon excitation of semiconductor quantum dots incorporated into a one-dimensional photonic crystal, a porous silicon microcavity. It has been shown that the formation of a weak coupling between an exciton transition in quantum dots and an eigenmode of the microcavity enhances the photoluminescence of quantum dots. It is important that quantum dots placed in the porous silicon matrix hold a sufficiently large cross section for two-photon absorption, which makes it possible to efficiently excite their exciton states up to saturation without reaching powers leading to the photothermic destruction of the structure of porous silicon and to the disappearance of the weak coupling effect. It has been demonstrated that the radiative recombination rate under the two-photon excitation of the system consisting of quantum dots and the microcavity increases by a factor of 4.3; it has been shown that this increase is due to the Purcell effect. Thus, fabricated microcavities based on 1D porous silicon crystals allow controlling the quantum yield of photoluminescence of quantum dots under two-photon excitation, which opens prospects for the development of new photoluminescent sensors based on quantum dots operating in the near infrared spectral range.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Многослойные полимерные капсулы для адресной доставки противоопухолевых соединений

2024, Калениченко, Д. В., Нифонтова, Г. О., Крюкова, И. С., Суханова, А., Набиев, И., Набиев, Игорь Руфаилович, Крюкова, Ирина Сергеевна, Калениченко, Дарья Владимировна

Разработка систем контролируемой адресной доставки препаратов для персонализированной терапии рака является одной из важнейших задач современной медицины. Контролируемые доставка и высвобождение противоопухолевых препаратов обеспечивают снижение их токсичности для нормальных клеток организма человека и уменьшают побочные эффекты терапии рака. Многослойные полимерные капсулы (МПК) являются перспективными потенциальными кандидатами для разработки систем доставки на их основе. МПК получают с помощью послойной адсорбции противоположно заряженных полиэлектролитов на поверхности заряженного микросубстрата сферической формы. Данный метод позволяет получать МПК различной структуры, функционализировать их противоопухолевыми агентами и направляющими биомолекулами для их адресной доставки к опухоли. В представленной работе описаны основные этапы получения МПК, а также проанализированы факторы, влияющие на эффективность загрузки в МПК противоопухолевого препарата доксорубицина с помощью метода пассивной диффузии.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Cytotoxic Effects of Doxorubicin on Cancer Cells and Macrophages Depend Differently on the Microcarrier Structure

2024, Kalenichenko, D., Kriukova, I., Karaulov, A., Nabiev, I., Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович

Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of the antitumor drug doxorubicin (DOX) were developed, and their cytotoxic effects on human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells were compared in vitro. DOX-containing calcium carbonate microparticles with or without a protective polyelectrolyte shell and polyelectrolyte microcapsules of about 2.4ў??2.5 Ћ?m in size were obtained through coprecipitation and spontaneous loading. All the microstructures exhibited a prolonged release of DOX. An estimation of the cytotoxicity of the DOX-containing microstructures showed that the encapsulation of DOX decreased its toxicity to macrophages and delayed the cytotoxic effect against tumor cells. The DOX-containing calcium carbonate microparticles with a protective polyelectrolyte shell were more toxic to the cancer cells than DOX-containing polyelectrolyte microcapsules, whereas, for the macrophages, the microcapsules were most toxic. It is concluded that DOX-containing core/shell microparticles with an eight-layer polyelectrolyte shell are optimal drug microcarriers due to their low toxicity to immune cells, even upon prolonged incubation, and strong delayed cytotoxicity against tumor cells.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity

2019, Mochalov, Konstantin, Dovzhenko, Dmitriy, Vaskan, Ivan, Kryukova, Irina, Rakovich, Yury, Nabiev, Igor, Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович

Resonance interaction between a localized electromagnetic field and excited states in molecules paves the way to control fundamental properties of a matter. In this study, we encapsulated organic molecules with relatively low unoriented dipole moments in the polymer matrix, placed them in tunable optical microcavity and realized, for the first time, controllable modification of the broad photoluminescence (PL) emission of these molecules in strong coupling regime at room temperature. Notably, while in most previous studies it was reported that the single mode dominates in the PL signal (radiation of the so-called branch of the lower polariton), here we report on the observation of two distinct PL peaks, evolution of which has been followed as the microcavity mode is detuned from the excitonic resonance. A significant Rabi splitting estimated from the modified PL spectra was as large as 225 meV. The developed approach can be used both in fundamental research of resonant light-mater coupling and its practical applications in sensing and development of coherent spontaneous emission sources using a combination of carefully designed microcavity with a wide variety of organic molecules. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Enhanced spontaneous emission from two-photon-pumped quantum dots in a porous silicon microcavity

2020, Dovzhenko, D., Krivenkov, V., Kriukova, I., Samokhvalov, P., Nabiev, I., Крюкова, Ирина Сергеевна, Самохвалов, Павел Сергеевич, Набиев, Игорь Руфаилович

Photoluminescence (PL)-based sensing techniques have been significantly developed in practice due to their key advantages in terms of sensitivity and versatility of the approach. Recently, various nanostructured and hybrid materials have been used to improve the PL quantum yield and the spectral resolution. The near-infrared (NIR) fluorescence excitation has attracted much attention because it offers deep tissue penetration and it avoids the autofluorescence of the biological samples. In our study, we have shown both spectral and temporal PL modifications under two-photon excitation of quantum dots (QDs) placed in one-dimensional porous silicon photonic crystal (PhC) microcavities. We have demonstrated an up-to-4.3-fold Purcell enhancement of the radiative relaxation rate under two-photon excitation. The data show that the use of porous silicon PhC microcavities operating in the weak coupling regime permits the enhancement of the PL quantum yield of QDs under two-photon excitation, thus extending the limits of their biosensing applications in the NIR region of the optical spectrum. (C) 2020 Optical Society of America

Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Microfluidics and Nanofluidics in Strong Light–Matter Coupling Systems

2024, Granizo, E., Kriukova, I., Escudero-Villa, P., Samokhvalov, P., Nabiev, I., Гранисо Роман, Эвелин Алехандра, Крюкова, Ирина Сергеевна, Самохвалов, Павел Сергеевич, Набиев, Игорь Руфаилович

The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Enhancement of the photoluminescence of semiconductor nanocrystals in transfer-printed microcavities based on freestanding porous silicon photonic crystals

2020, Kryukova, I. S., Dovzhenko, D. S., Rakovich, Yu. P., Nabiev, I. R., Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович

© Published under licence by IOP Publishing Ltd.Today, lots of research address the phenomenon of interaction between light and matter. In particular, it is of a special interest to investigate light-matter interaction in one-dimensional resonators based on porous materials. In this case, one can embed emitting semiconductor particles into the porous resonator, where the excitons of these particles couple to the resonator eigenmode and luminescence intensity of the emitters is enhanced, allowing an increase in the sensitivity of optical sensors, detectors, and photonic diagnostic assays. A particular challenge is to place the emitters directly in the antinode region of the resonator eigenmode in order to maximize the coupling strength, which is sometimes a problem due to the spatial distribution of emitters away from the eigenmode localization region. Here, we have shown that the transfer-printing technique can be used to obtain structures based on freestanding porous silicon photonic crystals capable of precisely controlling the emitter spatial distribution about the eigenmode localization region. This, as well as the porosity of these structures and high adsorption capacity of porous silicon, allows the light-matter interaction in these hybrid structures to be used in sensing applications. We have shown that the transfer-printing method does not worsen the optical properties of the microcavities compared to the conventional electrochemical etching of the whole microcavity at a time. Furthermore, we have observed slightly better coupling of the exciton of the emitter to the eigenmode of the transfer-printed microcavity in the weak coupling regime.

Загружается...
Уменьшенное изображение
Публикация
Открытый доступ

Взаимодействие белков сыворотки и плазмы крови человека с полиэлектролитными микрокапсулами различной структуры

2024, Герасимович, Е. С., Нифонтова, Г. О., Крюкова, И. С., Набиев, И., Суханова, А., Герасимович, Евгения Семёновна, Крюкова, Ирина Сергеевна, Набиев, Игорь Руфаилович

Исследование особенностей взаимодействия систем для адресной доставки лекарств с компонентами биологических жидкостей человека является одним из актуальных направлений в области разработки персонализированных стратегий терапии различных заболеваний человека. Инкапсуляция лекарственных средств в микроносители обеспечивает интактность лекарственных средств и их пролонгированное высвобождение в органе-мишени. Структура и свойства поверхности микроносителей определяют их общую биосовместимость и особенности их взаимодействий с биомолекулами. В представленной работе были получены микрочастицы структуры ядро/полиэлектролитная оболочка и полиэлектролитные микрокапсулы (микрочастицы с растворённым ядром), отличающиеся друг от друга степенью жесткости своей структуры, и проведен анализ их взаимодействий с белками сыворотки и плазмы крови человека. Полученные результаты показали наличие выраженных отличий в профиле белков, связывающихся с поверхностью полиэлектролитных микрочастиц и микрокапсул с различной степенью жесткости.