Персона:
Крюкова, Ирина Сергеевна

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Крюкова
Имя
Ирина Сергеевна
Имя

Результаты поиска

Теперь показываю 1 - 10 из 11
  • Публикация
    Только метаданные
    Weak Coupling between Light and Matter in Photonic Crystals Based on Porous Silicon Responsible for the Enhancement of Fluorescence of Quantum Dots under Two-Photon Excitation
    (2020) Kriukova, I. S.; Krivenkov, V. A.; Samokhvalov, P. S.; Nabiev, I. R.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2020, Pleiades Publishing, Inc.The development of optical and, in particular, photoluminescent sensors is currently becoming more and more significant because of their universality, selectivity, and high sensitivity ensuring their wide applications in practice. The efficiency of existing photoluminescent sensors can be increased by using photoluminescent nanomaterials and hybrid nanostructures. For biological applications of photoluminescent sensors, it is extremely relevant to excite photoluminescence in the near infrared spectral range, which allows excluding the effect of autofluorescence of biomolecules and ensuring a deeper penetration of radiation into biological tissues. In this work, it has been studied how the spectral and kinetic parameters of photoluminescence change under two-photon excitation of semiconductor quantum dots incorporated into a one-dimensional photonic crystal, a porous silicon microcavity. It has been shown that the formation of a weak coupling between an exciton transition in quantum dots and an eigenmode of the microcavity enhances the photoluminescence of quantum dots. It is important that quantum dots placed in the porous silicon matrix hold a sufficiently large cross section for two-photon absorption, which makes it possible to efficiently excite their exciton states up to saturation without reaching powers leading to the photothermic destruction of the structure of porous silicon and to the disappearance of the weak coupling effect. It has been demonstrated that the radiative recombination rate under the two-photon excitation of the system consisting of quantum dots and the microcavity increases by a factor of 4.3; it has been shown that this increase is due to the Purcell effect. Thus, fabricated microcavities based on 1D porous silicon crystals allow controlling the quantum yield of photoluminescence of quantum dots under two-photon excitation, which opens prospects for the development of new photoluminescent sensors based on quantum dots operating in the near infrared spectral range.
  • Публикация
    Только метаданные
    Enhanced spontaneous emission from two-photon-pumped quantum dots in a porous silicon microcavity
    (2020) Dovzhenko, D.; Krivenkov, V.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    Photoluminescence (PL)-based sensing techniques have been significantly developed in practice due to their key advantages in terms of sensitivity and versatility of the approach. Recently, various nanostructured and hybrid materials have been used to improve the PL quantum yield and the spectral resolution. The near-infrared (NIR) fluorescence excitation has attracted much attention because it offers deep tissue penetration and it avoids the autofluorescence of the biological samples. In our study, we have shown both spectral and temporal PL modifications under two-photon excitation of quantum dots (QDs) placed in one-dimensional porous silicon photonic crystal (PhC) microcavities. We have demonstrated an up-to-4.3-fold Purcell enhancement of the radiative relaxation rate under two-photon excitation. The data show that the use of porous silicon PhC microcavities operating in the weak coupling regime permits the enhancement of the PL quantum yield of QDs under two-photon excitation, thus extending the limits of their biosensing applications in the NIR region of the optical spectrum. (C) 2020 Optical Society of America
  • Публикация
    Открытый доступ
    Гибридные системы на основе фотонных кристаллов из пористого кремния, жидких кристаллов и квантовых точек
    (2024) Крюкова, И. С.; Бобровский, А. Ю.; Мартынов, И. Л.; Самохвалов, П. С.; Набиев, И. Р.; Набиев, Игорь Руфаилович; Самохвалов, Павел Сергеевич; Мартынов, Игорь Леонидович; Крюкова, Ирина Сергеевна
    Фотонные кристаллы из пористого кремния (ПК) представляют большой интерес для фундаментальных и прикладных исследований. Внедрение люминофоров в эти структуры позволяет управлять их излучательными свойствами, что перспективно для использования в лазерах и дисплеях, а также для исследований взаимодействия света с веществом. В то же время разработка фотонных кристаллов, в которых спектральное положение фотонной запрещенной зоны может быть сдвинуто внешними воздействиями, открывает перспективы для создания новых фотонных и оптоэлектронных материалов. В настоящей работе предложена технология изготовления гибридных систем на основе квантовых точек (КТ) и фотохромной нематической жидкокристаллической (ЖК) смеси, внедренных в микрорезонаторы (МР) из ПК. При внедрении в МР, спектр фотолюминесценции (ФЛ) КТ сужается, что обусловлено эффектом Парселла и слабой связью экситонных переходов в КТ с собственной модой МР из ПК. При воздействии УФ-излучения наблюдается длинноволновый сдвиг спектра ФЛ гибридной структуры, а также обратный сдвиг спектра при облучении видимым светом. Продемонстрированный фотооптический отклик может быть использован для управления ФЛ свойствами гибридных систем и создания на их основе новых фотонных, оптоэлектронных и сенсорных устройств.
  • Публикация
    Только метаданные
    Near-infrared photoluminescent hybrid structures based on freestanding porous silicon photonic crystals and PbS quantum dots
    (2022) Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2021, King Abdulaziz City for Science and Technology.Light–matter interaction in hybrid systems made of fluorophores embedded into a microcavity (MC) attracts much attention. Depending on the coupling strength between the components, either photoluminescence (PL) enhancement or hybridization of the luminophore energy levels with the MC eigenmode resulting in two hybrid energy states occurs in these systems. This effect can be used in various practical applications: enhancing Raman scattering, increasing conductivity, obtaining Bose–Einstein condensates at room temperature, etc. Hybrid structures emitting in the near-infrared (NIR) range can be used in biomedical applications for exciting and detecting radiation within the transparency window of biological tissues. Here, we have developed hybrid photoluminescent structures based on porous silicon photonic crystals (PhCs) and PbS quantum dots (QDs) emitting in the NIR range. The freestanding PhC-based MCs were obtained by electrochemical etching of monocrystalline Si. Comparison of the PhC reflectance spectra before and after exfoliation from the substrate, as well as after thermal oxidation, showed a 100-nm blue shift, other parameters being almost unchanged. After embedding QDs, we observed narrowing of their PL spectrum compared to the QD solution. We attribute this to the Purcell effect and weak coupling between the QD exciton and MC eigenmode. Thus, our hybrid structures exhibit weak light–matter coupling in the NIR range, which provides the basis for new nanophotonic biosensor systems. In addition, they are freestanding, thus offering prospects for designing sensors with the option of pumping analytes through the porous structure.
  • Публикация
    Только метаданные
    Hierarchical plasmon-optical cavities based on porous silicon photonic crystals for light-matter coupling with quantum emitters
    (2023) Kriukova, I. S.; Granizo, E. A.; Samokhvalov, P. S.; Nabiev, I.; Krivenkov, V.; Крюкова, Ирина Сергеевна; Гранисо Роман, Эвелин Алехандра; Самохвалов, Павел Сергеевич
  • Публикация
    Только метаданные
    Hybrid Systems Based on Porous Silicon Photonic Crystals, Liquid Crystals, and Quantum Dots
    (2023) Kriukova, I. S.; Martynov, I. L.; Samokhvalov, P. S.; Nabiev, I. R.; Крюкова, Ирина Сергеевна; Мартынов, Игорь Леонидович; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
  • Публикация
    Только метаданные
    Experimental and theoretical study of a flow photoreactor operating in the strong light-matter coupling regime
    (2024) Granizo, E. A.; Kriukova, I. S.; Samokhvalov, P. S.; Nabiec, I. R.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
  • Публикация
    Только метаданные
    Enhanced fluorescence emission of a single quantum dot in a porous silicon photonic crystal-plasmonic hybrid resonator
    (2024) Granizo, E.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Гранисо Роман, Эвелин Алехандра; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    Abstract Currently, much interest is attracted to investigating the potential of hybrid systems that exhibit plasmon-induced photoluminescence (PL) enhancement of quantum emitters in terms of optoelectronics and biosensing applications. The implementation of these systems based on photonic microcavities offers benefits due to a stronger localization of the field within the resonant cavity. Porous silicon is one of interesting materials for engineering such microcavities thanks to the simplicity of its fabrication and the possibility to embed emitters from the solution into a ready-made resonator. In this theoretical study, the fluorescence enhancement of a quantum dot (QD) in a hybrid system based on a porous silicon microcavity (pSiMC) and silver nanoplatelets (AgNPs) was investigated using finite element method (FEM) numerical simulations. For this purpose, infinite arrays were simulated by using a periodic unit cell. The pSiMC was designed as two Ћ? /4 distributed Bragg reflectors with alternating refractive indices and a cavity layer of a double thickness between them. For comparison, simulations were also performed for an AgNP and a QD in a reference monolayer with a constant refractive index without a microcavity structure. The results show QD fluorescence enhancement in the AgNP/pSiMC hybrid system, mainly due to the higher excitation rate.
  • Публикация
    Только метаданные
    Cavity-enhanced photoluminescence of semiconductor quantum dot thin films under two-photon excitation
    (2021) Dovzhenko, D.; Saanchez-Iglesias, A.; Grzelczak, M.; Rakovich, Y.; Krivenkov, V.; Kriukova, I.; Samokhvalov, P.; Nabiev, I.; Крюкова, Ирина Сергеевна; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович
    © 2021 SPIE.Semiconductor quantum dots (QDs) feature high values of the two-photon absorption (TPA) cross-sections, enabling their applications in biosensing and nonlinear optoelectronics. However, the efficient QD photoluminescence (PL) intensity caused by TPA requires high-intensity laser excitation which hinders these applications. Placing the QDs in the micro- or nanocavities leads to a change in their PL properties. Particularly, near plasmon nanoparticles (open nanocavities) the local field may be enhanced by the localized plasmons, which will lead to an increase of the TPA efficiency. Alternatively, placing QDs in a photonic crystal may boost an increase of their PL quantum yield due to the Purcell effect and also increase their PL intensity at the photonic mode wavelength due to the redistribution of the density of photonic states. In this study, we have fabricated thin-film hybrid materials based on QDs placed near plasmonic nanoparticles or in the photonic crystal. We have demonstrated a 4.3-fold increase of the radiative recombination rate of QDs in the photonic crystal cavity under the two-photon excitation, resulting in the increase of the PL quantum yield. In turn, the coating of the QDs films with the gold nanorods led to the 12-fold increase in TPA at the maximum of the plasmon spectrum. Our results pave the way to a strong increase of the PL efficiency of the QDs under two-photon excitation for their applications in biosensing and nonlinear optoelectronics.
  • Публикация
    Только метаданные
    Controlling the Luminescence of Quantum Dots in Hybrid Structures Based on Porous Silicon
    (2024) Kriukova, I. S.; Granizo, E. A.; Knysh, A. A.; Samokhvalov, P. S.; Nabiev, I. R.; Крюкова, Ирина Сергеевна; Гранисо Роман, Эвелин Алехандра; Кныш, Александр Александрович; Самохвалов, Павел Сергеевич; Набиев, Игорь Руфаилович