Персона:
Никитенко, Владимир Роленович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт нанотехнологий в электронике, спинтронике и фотонике
Институт ИНТЭЛ занимается научной деятельностью и подготовкой специалистов в области исследования физических принципов, проектирования и разработки технологий создания компонентной базы электроники гражданского и специального назначения, а также построения современных приборов на её основе. ​Наша основная цель – это создание и развитие научно-образовательного центра мирового уровня в области наноструктурных материалов и устройств электроники, спинтроники, фотоники, а также создание эффективной инновационной среды в области СВЧ-электронной и радиационно-стойкой компонентной базы, источников ТГц излучения, ионно-кластерных технологий материалов.​
Статус
Фамилия
Никитенко
Имя
Владимир Роленович
Имя

Результаты поиска

Теперь показываю 1 - 3 из 3
  • Публикация
    Только метаданные
    Role of the reorganization energy for charge transport in disordered organic semiconductors
    (2021) Saxena, R.; Fishchuk, I. I.; Genoe, J.; Bassler, H.; Nikitenko, V. R.; Burdakov, Y. V.; Metel, Y. V.; Никитенко, Владимир Роленович
    © 2021 American Physical Society.While it is commonly accepted that the activation energy of the thermally activated polaron hopping transport in disordered organic semiconductors can be decoupled into a disorder and a polaron contribution, their relative weight is still controversial. This feature is quantified in terms of the so-called C factor in the expression for the effective polaron mobility: μe∝exp[-Ea/kBT-C(σ/kBT)2], where Ea and σ are the polaron activation energy and the energy width of a Gaussian density of states (DOS), respectively. A key issue is whether the universal scaling relation (implying a constant C factor) regarding the polaron formation energy is really obeyed, as recently claimed in the literature [Seki and Wojcik, J. Chem. Phys. 145, 034106 (2016)10.1063/1.4958835]. In the present work, we reinvestigate this issue on the basis of the Marcus transition rate model using extensive kinetic Monte Carlo simulations as a benchmark tool. We compare the polaron-transport simulation data with results of analytical calculations by the effective medium approximation and multiple trapping and release approaches. The key result of this study is that the C factor for Marcus polaron hopping depends on first the degree of carrier localization, i.e., the coupling between the sites, further whether quasiequilibrium has indeed been reached, and finally the σ/Ea ratio. This implies that there is no universal scaling with respect to the relative contribution of polaron and disorder effect. Finally, we demonstrate that virtually the same values of the disorder parameter σ are determined from available experimental data using the C factors obtained here irrespective of whether the data are interpreted in terms of Marcus or Miller-Abrahams rates. This implies that molecular reorganization contributes only weakly to charge transport, and it justifies the use of the zero-order Miller-Abrahams rate model for evaluating the DOS width from temperature-dependent charge transport measurements regardless of whether or not polaron effects are accounted for.
  • Публикация
    Только метаданные
    Anisotropic Hole Transport in a p-Quaterphenyl Molecular Crystal: Theory and Simulation
    (2021) Postnikov, V. A.; Freidzon, A. Ya.; Bagaturyants, A. A.; Burdakov, Y. V.; Nikitenko, V. R.; Фрейдзон, Александра Яковлевна; Никитенко, Владимир Роленович
    © 2021 American Chemical Society.A computational procedure is proposed for predicting the charge hopping rate in organic semiconductor crystals. The procedure is verified using a p-quaterphenyl molecular crystal as the test system, in which the thermally activated hole mobility is relatively low, its hole states are localized, and, hence, charge transport is of hopping character. The hole mobility in p-quaterphenyl is simulated by the Monte Carlo method with the hopping probability governed by a Marcus-like rate constant. The microscopic parameters of the Marcus model have been calculated by ab initio multireference quantum chemical method (XMCQDPT/CASSCF). Molecular conformation and crystal environment effects on the Marcus hopping parameters are studied. It is found that different arrangements of monomers typical for the crystal structure provide different hopping parameters and, hence, different hole mobilities in different directions. Monte Carlo simulations of the hole mobility predict that the hole mobility attains its maximum in the [100] direction, where hopping occurs through parallel monomers at the closest distance, which is lower than 0.01 cm2/(V·s).
  • Публикация
    Только метаданные
    Modeling of charge transport in polymers with embedded crystallites
    (2023) Burdakov, Y. V.; Saunina, A. Y.; Bassler, H.; Nikitenko, V. R.; Саунина, Анна Юрьевна; Никитенко, Владимир Роленович