Персона: Губанова, Елизавета Михайловна
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Губанова
Имя
Елизавета Михайловна
Имя
Результаты поиска
Теперь показываю 1 - 3 из 3
- ПубликацияОткрытый доступFerromagnetic resonance spectra of linear magnetosome chains(2024) Gubanova, E. M.; Usov, N. A.; Губанова, Елизавета Михайловна; Усов, Николай АлександровичThe ferromagnetic resonance (FMR) spectra of oriented and non-oriented assemblies of linear magnetosome chains are calculated by solving the stochastic Landauў??Lifshitz equation. The dependence of the shape of the FMR spectrum of a dilute assembly of chains on the particle diameter, the number of particles in a chain, the distance between the centers of neighboring particles, the mutual orientation of the cubic axes of particle anisotropy, and the value of the magnetic damping constant is studied. It is shown that FMR spectra of non-oriented chain assemblies depend on the average particle diameter at a fixed thickness of the lipid magnetosome membrane, as well as on the value of the magnetic damping constant. At the same time, they are practically independent of the number N p of particles in the chain under the condition N p ў?? 10. The FMR spectra of non-oriented assemblies of magnetosome chains are compared with that of random clusters of interacting spherical magnetite nanoparticles. The shape of FMR spectra of both assemblies is shown to differ appreciably even at sufficiently large values of filling density of random clusters.
- ПубликацияОткрытый доступSpecific absorption rate of assembly of magnetic nanoparticles with uniaxial anisotropy(2020) Wei, Z. H.; Usov, N. A.; Gubanova, E. M.; Усов, Николай Александрович; Губанова, Елизавета Михайловна© Published under licence by IOP Publishing Ltd.Specific absorption rate of superparamagnetic nanoparticles with uniaxial magnetic anisotropy has been calculated both for dilute assembly and for assembly of nanoparticle clusters with various filling factors using numerical simulation. The optimal particle diameters at which the specific absorption rate of assembly reaches a maximum have been obtained depending on the value of the uniaxial anisotropy constant. The optimal particle diameters are found to shift to smaller values with an increase in the anisotropy constant. The range of optimal diameters decreases simultaneously. The specific absorption rate decreases also as a function of cluster filling factor, but the optimal particle diameters remain almost unchanged.
- ПубликацияОткрытый доступApplication of Magnetosomes in Magnetic Hyperthermia(2020) Usov, N. A.; Gubanova, E. M.; Усов, Николай Александрович; Губанова, Елизавета МихайловнаNanoparticles, specifically magnetosomes, synthesized in nature by magnetotactic bacteria, are very promising to be usedin magnetic hyperthermia in cancer treatment. In this work, using the solution of the stochastic Landau-Lifshitz equation, we calculate the specific absorption rate (SAR) in an alternating (AC) magnetic field of assemblies of magnetosome chains depending on the particle sizeD, the distance between particles in a chaina, and the angle of the applied magnetic field with respect to the chain axis. The dependence of SAR on thea/Dratio is shown to have a bell-shaped form with a pronounced maximum. For a dilute oriented chain assembly with optimally chosena/Dratio, a strong magneto-dipole interaction between the chain particles leads to an almost rectangular hysteresis loop, and to large SAR values in the order of 400-450 W/g at moderate frequenciesf= 300 kHz and small magnetic field amplitudesH(0)= 50-100 Oe. The maximum SAR value only weakly depends on the diameter of the nanoparticles and the length of the chain. However, a significant decrease in SAR occurs in a dense chain assembly due to the strong magneto-dipole interaction of nanoparticles of different chains.