Персона: Кулешова, Евгения Анатольевна
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Кулешова
Имя
Евгения Анатольевна
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияОткрытый доступThe Effect of Operational Factors on Phase Formation Patterns in the Light-Water Reactor Pressure Vessel Steels(2023) Fedotova, S.; Kuleshova, E.; Кулешова, Евгения АнатольевнаThis paper presents the results of atom probe tomography studies on radiation-induced phase formation in light-water reactor pressure vessel steels after neutron irradiation under various conditions in comparison with the literature data. The given irradiation conditions are fluence (10–100) Г— 1022 mв€’2, flux (5–2700) Г— 1014 mв€’2sв€’1 and irradiation temperature (50–400) В°C. The composition of the studied steels varies in a wide range for the elements significantly affecting radiation and thermal resistance of steels: Ni in the range of 0.2–6.0 wt.%, Mn–0.03–1.1 wt.%, Cu–0.01–0.16 wt.%, and P–0.01–0.03 wt.%. The number density, volume fraction, size, composition, and nucleation sites of precipitates are determined. The regularities of the effect of various operational factors on the phase formation in these steels have been analyzed and revealed. The study shows that in materials with high copper content, Cu-rich precipitates are formed by a radiation-enhanced mechanism. In materials with low copper content, their formation upon irradiation at 300 В°C occurs by a radiation-induced mechanism since the main nucleation sites are point defect clusters formed in cascades. At the same time, the density, volume fraction, and composition of the precipitates depend on the steel composition (Ni and Mn content). In the steel with increased Ni content up to 5 wt.% but with ultra-low Mn content ≤ 0.03 wt.%, it is possible to suppress the formation of Ni-Si-Mn precipitates under irradiation.
- ПубликацияОткрытый доступPhase Formation Features of Reactor Pressure Vessel Steels with Various Ni and Mn Content under Conditions of Neutron Irradiation at Increased Temperature(2023) Kuleshova, E. A.; Fedotov, I.; Maltsev, D.; Fedotova, S.; Кулешова, Евгения АнатольевнаIn this paper the phase formation and mechanical properties of VVER-type reactor pressure vessel (RPV) steels with various Ni (1.57–5.95 wt.%) and Mn (0.03–0.76 wt.%) content after neutron irradiation up to fluences in the range of (53–120) Г— 1022 n/m2 at 400 В°C were studied. The possibility of carbonitride formation under these irradiation conditions is shown. In case of sufficient Ni (andgt;1.5 wt.%) and Mn (andgt;0.3 wt.%) content formation of Ni-Si-Mn precipitates is observed. Their chemical composition is close to G-phase and О“2-phase and differs from that of radiation-induced precipitates in VVER-1000 RPV steels. This indicates the prerequisites for thermally conditioned mechanism of Ni-Si-Mn precipitates formation and growth at 400 В°C enhanced by irradiation. It is also shown that the optimized steel manufacturing technology coupled with an ultralow Mn content (≤0.03 wt.%) in steel with increased up to 5.26 wt.% Ni content facilitates suppressing the Ni-Si-Mn precipitates and carbonitrides formation. This, in turn, reduces the contribution of the hardening embrittlement mechanism and, correspondingly, facilitates high radiation resistance of the steels with ultralow Mn content at the increased irradiation temperature (400 В°C).