Персона:
Пугачев, Павел Александрович

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Пугачев
Имя
Павел Александрович
Имя

Результаты поиска

Теперь показываю 1 - 10 из 12
  • Публикация
    Только метаданные
    Numerical simulation of plutonium measurements using an active well coincidence counter (AWCC)
    (2024) Vladimirov,D.A.; Rogozhkin, V. Yu.; Gorbunova, A. Yu.; Aleeva, T. B.; Pugachev, P. A.; Алеева, Татьяна Борисовна; Пугачев, Павел Александрович
  • Публикация
    Открытый доступ
    "ИНТЕРАКТИВНАЯ ЛАБОРАТОРНАЯ РАБОТА В ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ "ПУСК РЕАКТОРА ИРТ МИФИ"
    (НИЯУ МИФИ, 2023) Пугачев, П. А.; Тихомиров, Г. В.; Кирюхин, П. К.; Григорьев, Е. В.; Щербаков, А. А.; Романенко, В. И.; Хомяков, Д. А.; Минаев, Е. В. ; Чернов, Е. В.; Романенко, Владислав Игоревич; Чернов, Евгений Владимирович; Тихомиров, Георгий Валентинович; Кирюхин, Павел Константинович; Хомяков, Дмитрий Андреевич; Щербаков, Александр Антонович; Пугачев, Павел Александрович
    Программа предназначена для обучения студентов основам обращения с экспериментальными реакторами на примере операции пуска. Лабораторная работа выполнена в виде интерактивного приложения в виртуальной реальности, воссоздающего опыт работы на установке-прототипе - реакторе ИРТ МИФИ. Лабораторная работа включает окружение ИРТ МИФИ, полностью функциональный пульт управления реактором и математические модели, нейтронно-физические и теплофизические, обеспечивающие моделирование процессов инженерной точности. Тип ЭВМ: IBM PC-совмест. ПК; ОС: Windows 10 и выше.
  • Публикация
    Только метаданные
    Analysis of Methods and Technologies for Assessing the Composition of the Corium Formed as a Result of the Accident at the Fukushima Daiichi NPP
    (2022) Ryzhov, S. N.; Bogdanova, E. V.; Ryzhkov, A. A.; Pugachev, P. A.; Tikhomirov, G. V.; Ternovykh, M. Y.; Aleeva, T. B.; Рыжов, Сергей Николаевич; Богданова, Екатерина Владимировна; Рыжков, Александр Александрович; Пугачев, Павел Александрович; Тихомиров, Георгий Валентинович; Терновых, Михаил Юрьевич; Алеева, Татьяна Борисовна
  • Публикация
    Только метаданные
    Программная реализация и проверка эффективности метода переменных направлений решения трехмерного уравнения диффузии
    (2021) Пугачев, П. А.; Пугачев, Павел Александрович; Сироткин Алексей Михайлович
  • Публикация
    Только метаданные
    Virtual analog of uranium-water subcritical assembly
    (2022) Kiryukhin, P. K.; Romanenko, V. I.; Khomyakov, D. A.; Shcherbakov, A. A.; Pugachev, P. A.; Yushin, I. M.; Ashraf, O.; Tikhomirov, G. V.; Кирюхин, Павел Константинович; Романенко, Владислав Игоревич; Хомяков, Дмитрий Андреевич; Щербаков, Александр Антонович; Пугачев, Павел Александрович; Тихомиров, Георгий Валентинович
    © 2022 Elsevier LtdVirtual reality (VR) technology is now being adopted in many industries, including entertainment, medicine, science, and engineering. In the nuclear field, the primary purposes of VR are: reducing radiation dose rates, security of nuclear facilities, visualization of physical processes, and training of personnel. Additionally, VR is a much cheaper alternative to expensive and license-requiring experimental nuclear facilities. This work focuses on reconstructing the workroom with the Uranium-Water Subcritical Assembly (UWSA) located at the National Research Nuclear University MEPhI to determine the optimal uranium–water ratio associated with this assembly in virtual reality. The creation of the virtual analog using Unreal Engine 4 was introduced to integrate the physical model into the virtual environment. The neutronic model of the UWSA was obtained by the MCU code. A similar model was generated by the Serpent code for verification purposes. Additional functions such as neutron flux visualization, radiation dose rate distribution visualization, and dose accumulation mechanics were introduced into the project to improve the quality of education. Visualization of both neutron flux in the assembly and gamma radiation distribution in the workroom was performed using particle systems and volumetric fog based on calculated and experimental data. Operating experience feedback was introduced to prevent or minimize difficulties that may occur in the future by learning from events that have already occurred.
  • Публикация
    Только метаданные
    Monte Carlo codes benchmarking on sub-critical fuel debris particles system for neutronic analysis
    (2022) Smirnov, A.; Bogdanova, E.; Pugachev, P.; Ternovykh, M.; Saldikov, I.; Tikhomirov, G.; Смирнов, Антон Дмитриевич; Богданова, Екатерина Владимировна; Пугачев, Павел Александрович; Терновых, Михаил Юрьевич; Тихомиров, Георгий Валентинович
    Fuel debris removal is the most challenging part of damaged nuclear power station decommissioning. It is important to carry out nuclear safety calculations accurately and quickly enough. Here, it was clarified that modern codes based on the Monte Carlo method were capable of performing neutronic analysis with the same accuracy and without significant differences in the results. The benchmark calculations were performed using three codes: MVP, Serpent, and MCU. In this study, the comparison focused on multiplication factor, neutron fluxes and reaction rates relative difference, and calculation time of many fuel debris particles system. Then the calculation results were used when codes comparing. It was shown that the calculation results showed good agreement between all codes. It was assumed that minor differences in the thermal range of neutron fluxes can be caused by different thermal neutrons scattering treatment for all codes. The study also showed that solving such problems requires significant computing power and time. It has been proven that the statistical geometry model in the MVP and the explicit stochastic geometry model in the Serpent have the possibility to provide solutions with the same accuracy, but much faster.
  • Публикация
    Открытый доступ
    Development of virtual analogues of nuclear facilities in virtual reality
    (2020) Dashanova, E. A.; Zadeba, E. A.; Kiryukhin, P. K.; Pugachev, P. A.; Romanenko, V. I.; Tikhomirov, G. V.; Khomyakov, D. A.; Shcherbakov, A. A.; Yushin, I. M.; Дашанова, Екатерина Александровна; Задеба, Егор Александрович; Кирюхин, Павел Константинович; Пугачев, Павел Александрович; Романенко, Владислав Игоревич; Тихомиров, Георгий Валентинович; Хомяков, Дмитрий Андреевич; Щербаков, Александр Антонович
    © Published under licence by IOP Publishing Ltd.Using virtual reality technology - a modern trend. The nuclear industry is no exception. This article provides an overview of mathematical models used to create virtual analogue of critical assembly Godiva in virtual reality. Godiva - there is a simple example that allows to hone techniques for creating more complex virtual analogues of nuclear reactors and nuclear facilities. Mathematical models include stationary and dynamic ones. The stationary model is based on data from calculations carried out using Monte Carlo programs such as MCU, Serpent and Geant4. An approach is also described that makes it possible to calculate the reverse multiplication from the values of the effective multiplication factor for various states of the subcritical assembly. The dynamic model allows one to calculate the neutron-physical characteristics of the supercritical assembly during fast processes such as a neutron burst. In conclusion, there are other examples of virtual analogs created using similar approaches.
  • Публикация
    Открытый доступ
    Development of a virtual analogue of uranium-graphite subcritical assembly and visualization of the neutron flux distribution in virtual reality
    (2020) Kiryukhin, P.; Shcherbakov, A.; Romanenko, V.; Pugachev, P.; Khomyakov, D.; Tikhomirov, G.; Zadeba, E.; Кирюхин, Павел Константинович; Щербаков, Александр Антонович; Романенко, Владислав Игоревич; Пугачев, Павел Александрович; Хомяков, Дмитрий Андреевич; Тихомиров, Георгий Валентинович; Задеба, Егор Александрович
    © 2020 The Authors. Published by Elsevier B.V.The article describes the new software product developed at MEPhI. It represents a virtual reality simulation of an experiment on a subcritical uranium-graphite assembly. This practical work plays an important role in the training of young specialists studying the physics of nuclear reactors. However not all students have access to real experimental facilities, this fact makes it necessary to complement real experiment with simulation in virtual reality that allows to accurately reproduce the actions that the student performs during the real practical work. This approach let to increase the efficiency of the educational process and even expand the capabilities of real experimental assembly by visualizing physical processes during its operation.
  • Публикация
    Открытый доступ
    CORIUMSITY program code for the consequences analysis of a severe core melt accident
    (2020) Saldikov, I. S.; Bogdanova, E. V.; Pugachev, P. A.; Ryzhov, S. N.; Smirnov, A. D.; Ternovykh, M. Y.; Tikhomirov, G. V.; Богданова, Екатерина Владимировна; Пугачев, Павел Александрович; Рыжов, Сергей Николаевич; Смирнов, Антон Дмитриевич; Терновых, Михаил Юрьевич; Тихомиров, Георгий Валентинович
    © Published under licence by IOP Publishing Ltd.As part of the tasks to improve the nuclear safety of nuclear power plants, a new program code was developed. The CORIUMSITY program code developed, considered in this work, is intended to analyze the scenario in which an accident at a nuclear power plant is simulated with the melting of the core and the formation of the so-called "corium"- a mixture of nuclear and structural materials of the nuclear reactor core, formed as a result of thermal and mechanical impact during an accident. The CORIUMSITY program code, is intended to analyze several scenarios of different accidents, include an accident with reactor core melting. The functions of this code can help in solving many urgent nuclear safety problems. One of the main methods of operation of the CORIUMSITY code algorithms is the matrix exponential method, which consists in using a matrix function of a square matrix, in which as values are used indicators corresponding to nuclides from the CORIUMSITY code database. The program implements an iterative Euler method for solving the system of levels of nuclear fuel burnup. The CORIUMSITY code was verified with benchmark data to assess the accuracy of the calculation.
  • Публикация
    Открытый доступ
    Visualization of neutron characteristics distribution of debris particles
    (2020) Takezawa, H.; Muramoto, T.; Nishiyama, J.; Obara, T.; Pugachev, P. A.; Bogdanova, E. V.; Saldikov, I. S.; Smirnov, A. D.; Ternovykh, M. Y.; Tikhomirov, G. V.; Пугачев, Павел Александрович; Богданова, Екатерина Владимировна; Смирнов, Антон Дмитриевич; Терновых, Михаил Юрьевич; Тихомиров, Георгий Валентинович
    © 2020 National Research Nuclear University. All rights reserved.Accident at Fukushima Daiichi nuclear power plant led to increase of importance of safe-ty justification for processes at post-accident facilities in nuclear industry. One of such pro-cesses is extraction of corium from reactors cavity. Recriticality of this process is defined by potential unacceptable accident. This paper introduces supporting code for neutron fluxes and reaction rates visualization in systems with complex geometry that can be used in model-ing of corium removing works. Visualization code is based on Unreal Engine 4 game engine. Code allows observing neutronic functionals distribution in three dimensions. The reseach and provided implementation details help to understand the physical processes that take place as the accidents occur during corium removing works.