Персона:
Пришвицын, Александр Сергеевич

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Пришвицын
Имя
Александр Сергеевич
Имя

Результаты поиска

Теперь показываю 1 - 8 из 8
  • Публикация
    Только метаданные
    System of high-speed video and infrared cameras for joint control of the lithium limiters behavior on tokamak T-11M. First results
    (2019) Djurik, A.; Lazarev, V.; Prishvitcyn, A.; Пришвицын, Александр Сергеевич
  • Публикация
    Только метаданные
    Lithium influence on edge plasma parameters at T-11M tokamak
    (2019) Shcherbak, A. N.; Vasina, Ya. A.; Prishvitcyn, A. S.; Mirnov, S. V.; Пришвицын, Александр Сергеевич
  • Публикация
    Только метаданные
    The dependence of lithium emissivity from temperature in vacuum ЗАВИСИМОСТЬ СТЕПЕНИ ЧЕРНОТЫ ЛИТИЯ ОТ ТЕМПЕРАТУРЫ В ВАКУУМЕ
    (2019) Prishvitsyn, A. S.; Krat, S.; Harina, A. P.; Pisarev, A. A.; Пришвицын, Александр Сергеевич; Крат, Степан Андреевич; Писарев, Александр Александрович
    © 2019 National Research Center Kurchatov Institute. All rights reserved.Correct interpretation of IR video observation data of the surfaces of plasma-facing elements in fusion devices requires detailed knowledge about the emissivity factor of these surfaces in different conditions. In this work, results of emissivity measurements for free metallic lithium surface and a lithium surface supported by the capillary-porous system (CPS) are measured as a function of temperature in the range from 400 to 800 K. Emissivity of solid lithium changed from ~0.04 at 400 K to ~0.09 at 453 K. During melting a sudden drop of emissivity down to ~0.04 was observed. Emissivity increased linearly from 0.04 to ~0.15 with temperature increasing from 455 to 800 K. For fully wetted CPS, emissivity was close to that of free lithium surface for temperature up to ~570 K, while at higher temperature it was lower, probably due to changes in microrelief at high temperatures.
  • Публикация
    Только метаданные
    Analysis of the Near-Surface Layers of Lithium Coatings Using Laser Induced Breakdown Spectroscopy
    (2019) Vovchenko, E. D.; Krat, S. A.; Kostyushin, V. A.; Khar'kov, M. M.; Bulgadaryan, D. G.; Prishvitsyn, A. S.; Stepanova, T. V.; Kurnaev, V. A.; Zakharov, L. E.; Вовченко, Евгений Дмитриевич; Крат, Степан Андреевич; Харьков, Максим Михайлович; Пришвицын, Александр Сергеевич; Степанова, Татьяна Владимировна
    © 2019, Pleiades Publishing, Ltd.The paper reports results of studying the geometry of craters formed by the action of laser pulses on solid-state targets of aluminum and lithium films at a power density on the target of (1–5) × 1010 W/cm2 and variation of the number of pulses in the range of 1–150, as well as the results of ex situ layer-by-layer analysis of lithium films on quartz coatings carried out using the method laser induced breakdown spectroscopy to determine the thickness of the films.
  • Публикация
    Только метаданные
    A setup for study of co-deposited films
    (2020) Krat, S. A.; Popkov, A. S.; Gasparyan, Y. M.; Vasina, Y. A.; Prishvitsyn, A. S.; Pisarev, A. A.; Крат, Степан Андреевич; Гаспарян, Юрий Микаэлович; Пришвицын, Александр Сергеевич; Писарев, Александр Александрович
    © 2020 IOP Publishing Ltd and Sissa Medialab.A setup for investigation of thermal desorption spectra of gases accumulated in thin films deposited by plasma sputtering of solid targets is described. Deposition and thermal desorption spectroscopy (TDS) are performed in two different vacuum chambers separated by a gate valve with the sample transferred between the chambers in-vacuo. The temperature of the substrate for deposited films can be varied in the range of 300-800 K; and the deposition rate is controlled by a quartz microbalance. Thermal desorption of co-deposited gases is analyzed by a quadrupole mass spectrometer. Sputtering rate and evaporation of the film during TDS are measured by quartz microbalances. Three experiments are described 1) trapping of deuterium by the growing chemically active Li film with subsequent decomposition and evaporation of the film, 2) temperature dependent deuterium trapping in the growing W film resulting in trapping with several binding energies, and 3) chemical interaction of D-Li layer with water vapor leading to isotopic H-D exchange and chemical transformation of the deposited film.
  • Публикация
    Только метаданные
    Isotope exchange in Li-D co-deposited layers at temperatures below 200 °C
    (2020) Krat, S.; Vasina, Y.; Prishvitsyn, A.; Gasparyan, Y.; Pisarev, A.; Крат, Степан Андреевич; Пришвицын, Александр Сергеевич; Гаспарян, Юрий Микаэлович; Писарев, Александр Александрович
    © 2020 Elsevier B.V.Hydrogen-deuterium isotope exchange in Li-D co-deposited films was studied as a method of removal of heavy hydrogen isotopes from Li films deposited in fusion devices. The total H and D retention was measured using in-vacuo thermal desorption spectroscopy. Co-deposited Li-D films were kept in H2 gas at 1 Pa and 105 Pa at room temperature, 100 °C, and 200 °C. Some reduction of the D content was observed even at RT, while nearly full isotope substitution was achieved at 200 °C after 1 day at 105 Pa in H2 gas.
  • Публикация
    Только метаданные
    Optimization of the technological system of a closed lithium circuit at T-11M tokamak ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКОИ СИСТЕМЫ ЗАМКНУТОГО ЛИТИЕВОГО КОНТУРА НА ТОКАМАКЕ Т-11М
    (2020) Djurik, A. S.; Lazarev, V. B.; Vasina, Ya. A.; Prishvitcyn, A. S.; Mirnov, S. V.; Пришвицын, Александр Сергеевич
    © 2020 National Research Center Kurchatov Institute. All rights reserved.The paper is devoted to physical issues of technology for creating the first wall of a stationary tokamak reactor using lithium protection. The emitter-collector circuit of lithium circulation in the plasma of column-wall space is analyzed. The main subject of analysis is the search for the most effective emitter-collector configurations. Experiments were conducted on the tokamak T-11M using diagnostics in the visible and infrared range of plasma and collectors made on the basis of capillary porous systems (CPS) filled of lithium. In addition to optical methods, the behavior of the protective lithium layer was studied using a Mach probe. As a result, it was found that of the four possible collector combinations, the most optimal is «symmetrical», when geometrically identical collectors are installed along the torus by 180o. This way suppresses the development of magnetic islands caused by a presence of collectors, and as a result, prevents increased transfer of lithium, to inside of the plasma column, and to the wall. A practical recommendation that can be made on this basis is all lithium emitters and collectors of tokamaks, where it is assumed to use the emitter-collector circuit, should be installed symmetrically and in pairs.
  • Публикация
    Только метаданные
    Substitution of heavy hydrogen isotopes in tungsten layers during gas exposure ЗАМЕЩЕНИЕ ТЯЖЕЛЫХ ИЗОТОПОВ ВОДОРОДА В ВОЛЬФРАМОВЫХ СЛОЯХ ПРИ ВЫДЕРЖКЕ В ГАЗЕ
    (2020) Krat, S. A.; Vasina, Ya. A.; Prishvitcyn, A. S.; Fefelova, E. A.; Popova, M. A.; Gasparyan, Yu. M.; Pisarev, A. A.; Крат, Степан Андреевич; Пришвицын, Александр Сергеевич; Гаспарян, Юрий Микаэлович; Писарев, Александр Александрович
    © 2020 National Research Center Kurchatov Institute. All rights reserved.Efficiency of deuterium removal from tungsten co-deposited layers was studied by means of thermal desorption spectroscopy in the 30 to 200 °С temperature range in vacuum and hydrogen atmosphere (8 104 Pa). Tungsten layers 100 nm and 500 nm thick were deposited in magnetron discharge in argon-deuterium environment and contained ~2% at. of deuterium. Presence of hydrogen (protium) during sample degassing increases the rate of deuterium removal. Simultaneously, an additional amount of protium is captured in the co-deposited layers. The rate of deuterium removal increases with temperature. Exposure at a temperature of 473 K in a hydrogen atmosphere for 18 hours allowed 99% of the captured deuterium to be removed.