Персона:
Астапов, Иван Иванович

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Астапов
Имя
Иван Иванович
Имя

Результаты поиска

Теперь показываю 1 - 4 из 4
  • Публикация
    Только метаданные
    Scintillation detectors for the TAIGA experiment
    (2019) Bezyazeekov, P.; Borodin, A.; Brueckner, M.; Budnev, N.; Astapov, I.; Kindin, V.; Kokoulin, R.; Kompaniets, K.; Petrukhin, A.; Yashin, I.; Астапов, Иван Иванович; Киндин, Виктор Владимирович; Кокоулин, Ростислав Павлович; Компаниец, Константин Георгиевич; Петрухин, Анатолий Афанасьевич; Яшин, Игорь Иванович
    © 2018 It is planned that new TAIGA-Muon detectors will complement the existing Tunka-GRANDE facility of scintillation detectors of the TAIGA gamma-observatory in the Tunka valley, Russia. The new design of scintillation detector with wavelength shifting bars and PMTs is developed. The first prototype of the counter was installed and tested using infrastructure of the Tunka-GRANDE installation in 2017. The mass production of counters has begun in 2018 at the Novosibirsk State University.
  • Публикация
    Только метаданные
    Experimental data of Muon hodoscope URAGAN for investigations of geoffective processes in the heliosphere
    (2020) Kovylyaeva, A.; Astapov, I.; Dmitrieva, A.; Borog, V.; Osetrova, N.; Yashin, I.; Астапов, Иван Иванович; Дмитриева, Анна Николаевна; Борог, Владимир Викторович; Яшин, Игорь Иванович
    © 2020, Ubiquity Press. All rights reserved.Muon hodoscope URAGAN continuously detects the angular distribution of muons in a wide range of zenith angles and allows one to obtain information about variations, both in the intensity and in angular characteristics of the muon flux, caused by active processes in the heliosphere, the magnetosphere and atmosphere of the Earth. Various parameters of the muon flux anisotropy and methods of calculation of these parameters are discussed. Real-time processing of a continuous flow of multidimensional data from the muon hodoscope URAGAN is quite a challenge. In the article, methods of formation and primary analysis of the data, their processing in real time and obtaining time series of various parameters of integral counting rate and angular anisotropy of the muon flux, which are important for the physical analysis of modulation processes of cosmic rays in the heliosphere, are presented.
  • Публикация
    Только метаданные
    Cherenkov EAS arrays in the Tunka astrophysical center: From Tunka-133 to the TAIGA gamma and cosmic ray hybrid detector
    (2020) Kuzmichev, L.; Bezyazeekov, P.; Borodin, A.; Bruckner, M.; Astapov, I.; Kindin, V.; Kokoulin, R.; Kompaniets, K.; Petrukhin, A.; Yashin, I.; Астапов, Иван Иванович; Киндин, Виктор Владимирович; Кокоулин, Ростислав Павлович; Компаниец, Константин Георгиевич; Петрухин, Анатолий Афанасьевич; Яшин, Игорь Иванович
    © 2019 Elsevier B.V. One of the most informative methods of cosmic ray studies is the detection of Cherenkov light from extensive air showers (EAS). The primary energy reconstruction is possible by using the Earth's atmosphere as a huge calorimeter. The EAS Cherenkov light array Tunka-133, with ∼3 km2 geometrical area, is taking data since 2009. Tunka-133 is located in the Tunka Astrophysical Center at ∼50 km west of Lake Baikal. This array allows us to perform a detailed study of the energy spectrum and the mass composition in the energy range from 6⋅1015eV to 1018eV. Most of the ongoing efforts are focused on the construction of the first stage of the detector TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy). The latter is designed for the study of gamma rays and charged cosmic rays in the energy range of 1013eV–1018eV. The TAIGA prototype will consist of ∼100 wide angle timing Cherenkov stations (TAIGA-HiSCORE) and three IACTs deployed over an area of ∼1 km2. The installation of the array is planned to be finished in 2019 while the data-taking can start already during the commissioning phase. The joint reconstruction of energy, direction, and core position of the imaging and non-imaging detectors will allow us to increase the distance between the IACTs up to 800 m, therefore providing a low-cost, highly sensitive detector. The relatively low cost together with the high sensitivity for energies ≥30–50 TeV make this pioneering technique very attractive for exploring galactic PeVatrons and cosmic rays. In addition to the Cherenkov light detectors we intend to deploy surface and underground muon detectors over an area of 1 km2 with a total area of about 1000 m2. The results of the first season of coincident operation of the first ∼4 m diameter IACT with an aperture of ∼10°with 30 stations of TAIGA-HiSCORE will be presented.
  • Публикация
    Только метаданные
    Optimization of electromagnetic and hadronic extensive air shower identification using the muon detectors of the TAIGA experiment
    (2020) Bezyazeekov, P.; Boreyko, V.; Borodin, A.; Brueckner, M.; Astapov, I.; Kindin, V.; Kokoulin, R.; Kompaniets, K.; Petrukhin, A.; Yashin, I.; Астапов, Иван Иванович; Киндин, Виктор Владимирович; Кокоулин, Ростислав Павлович; Компаниец, Константин Георгиевич; Петрухин, Анатолий Афанасьевич; Яшин, Игорь Иванович
    © 2018 Elsevier B.V. The TAIGA experiment in the Tunka valley near Lake Baikal is planning an extension with new TAIGA-Muon scintillation detector stations. The main purpose of TAIGA is gamma-ray astronomy in the TeV to PeV energy range and cosmic ray physics. The purpose of the Taiga-Muon detectors is to measure the muon component of air showers for improving cosmic ray composition measurements as well as gamma–hadron separation above 100 TeV. Monte Carlo simulations of the experiment are done with the software packages CORSIKA and GEANT4. Extensive air showers of primary particles in the energy range 100–3000 TeV are created with CORSIKA. The trigger efficiency is calculated and used for optimization. The suppression factor of hadronic showers versus electromagnetic showers is studied, leading to an optimum depth of soil absorber (2 m), at the lowest energy range. Data on the identification efficiency for primary gamma-quanta and proton events are presented as well as the suppression factor.