Персона:
Бухарский, Николай Дмитриевич

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Бухарский
Имя
Николай Дмитриевич
Имя

Результаты поиска

Теперь показываю 1 - 7 из 7
  • Публикация
    Только метаданные
    Kilotesla plasmoid formation by a trapped relativistic laser beam
    (2022) Ehret, M.; Kochetkov, Y.; Bukharskii, N.; Stepanishchev, V.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович
    A strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters. The proposed setup is suited for perspective highly magnetized plasma application and fundamental studies. © 2022 American Physical Society.
  • Публикация
    Только метаданные
    Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses
    (2022) Kochetkov, I. V.; Bukharskii, N. D.; Ehret, M.; Kuznetsov, A.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Кузнецов, Андрей Петрович; Корнеев, Филипп Александрович
    Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit. © 2022, The Author(s).
  • Публикация
    Только метаданные
    Terahertz annular antenna driven with a short intense laser pulse
    (2022) Bukharskii, N.; Kochetkov, I.; Korneev, P.; Бухарский, Николай Дмитриевич; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович
    © 2022 Author(s).Generation of terahertz radiation by an oscillating discharge, excited by short laser pulses, may be controlled by geometry of the irradiated target. In this work, an annular target with a thin slit is considered as an efficient emitter of secondary radiation when driven by a short intense laser pulse. Under irradiation, a slit works as a diode, which is quickly filled by dense plasmas, closing the circuit for a traveling discharge pulse. Such a diode defines the discharge pulse propagation direction in a closed contour, enabling its multiple passes along the coil. The obtained oscillating charge efficiently generates multi-period quasi-monochromatic terahertz waves with a maximum along the coil axis and controllable characteristics.
  • Публикация
    Только метаданные
    Generation of High-Power Terahertz Radiation Using High-Intensity Femtosecond Laser Pulses
    (2023) Bukharskii, N. D.; Kulikov, R. K.; Korneev, P. A.; Бухарский, Николай Дмитриевич; Куликов, Роман Константинович; Корнеев, Филипп Александрович
  • Публикация
    Только метаданные
    Study of a Highly Magnetized Relativistic Plasma in the Context of Laboratory Astrophysics and Particle Flow Control
    (2023) Bukharskii, N. D.; Korneev, P. A.; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович
  • Публикация
    Только метаданные
    Extreme Light Diagnostics
    (2023) Vais, O. E.; Ivanov, K. A.; Tsymbalov, I. N.; Bukharskii, N. D.; Korneev, P. A.; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович
  • Публикация
    Только метаданные
    Magnetic collimation system for improving ion trap loading efficiency
    (2023) Telnov, E. Y.; Borisyuk, P. V.; Bukharskii, N. D.; Korneev, Ph. A.; Cherepanov, P. A.; Trichev, K. K.; Борисюк, Петр Викторович; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович; Черепанов, Павел Андреевич; Тричев, Константин Константинович
    This work considers a solenoid-based magnetic collimation system for improving the efficiency of ion trap loading with ions created by laser ablation. We discuss a physical model of ion beam collimation in such a system, provide qualitative analytical estimates of its collimation characteristics, develop a numerical model of ion collimation based on a test-particle approach, and describe a real experimental setup where the proposed approach is effectively employed to collimate 232Th3+ and 88Sr1+ ions. The experimental results are compared with the results of the performed numerical modeling. The observed inconsistencies between the two are discussed, and their possible explanations are suggested.