Персона: Бухарский, Николай Дмитриевич
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Бухарский
Имя
Николай Дмитриевич
Имя
7 results
Результаты поиска
Теперь показываю 1 - 7 из 7
- ПубликацияТолько метаданныеKilotesla plasmoid formation by a trapped relativistic laser beam(2022) Ehret, M.; Kochetkov, Y.; Bukharskii, N.; Stepanishchev, V.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Корнеев, Филипп АлександровичA strong quasistationary magnetic field is generated in hollow targets with curved internal surface under the action of a relativistically intense picosecond laser pulse. Experimental data evidence the formation of quasistationary strongly magnetized plasma structures decaying on a hundred picoseconds timescale, with the magnetic field strength of the kilotesla scale. Numerical simulations unravel the importance of transient processes during the magnetic field generation and suggest the existence of fast and slow regimes of plasmoid evolution depending on the interaction parameters. The proposed setup is suited for perspective highly magnetized plasma application and fundamental studies. © 2022 American Physical Society.
- ПубликацияТолько метаданныеNeural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses(2022) Kochetkov, I. V.; Bukharskii, N. D.; Ehret, M.; Kuznetsov, A.; Korneev, P.; Кочетков, Юрий Владимирович; Бухарский, Николай Дмитриевич; Кузнецов, Андрей Петрович; Корнеев, Филипп АлександровичOptical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit. © 2022, The Author(s).
- ПубликацияТолько метаданныеTerahertz annular antenna driven with a short intense laser pulse(2022) Bukharskii, N.; Kochetkov, I.; Korneev, P.; Бухарский, Николай Дмитриевич; Кочетков, Юрий Владимирович; Корнеев, Филипп Александрович© 2022 Author(s).Generation of terahertz radiation by an oscillating discharge, excited by short laser pulses, may be controlled by geometry of the irradiated target. In this work, an annular target with a thin slit is considered as an efficient emitter of secondary radiation when driven by a short intense laser pulse. Under irradiation, a slit works as a diode, which is quickly filled by dense plasmas, closing the circuit for a traveling discharge pulse. Such a diode defines the discharge pulse propagation direction in a closed contour, enabling its multiple passes along the coil. The obtained oscillating charge efficiently generates multi-period quasi-monochromatic terahertz waves with a maximum along the coil axis and controllable characteristics.
- ПубликацияОткрытый доступIntense widely controlled terahertz radiation from laser-driven wires(2023) Bukharskii, N.; Korneev, P.; Бухарский, Николай Дмитриевич; Корнеев, Филипп АлександровичIrradiation of a thin metallic wire with an intense femtosecond laser pulse creates a strong discharge wave that travels as a narrow pulse along the wire surface. The travelling discharge efficiently emits secondary radiation with spectral characteristics mostly defined by the wire geometry. Several exemplary designs are considered in the context of generation of intense terahertz radiation with controllable characteristics for various scientific and technological applications. The proposed setup benefits by its robustness, versatility and high conversion efficiency of laser energy to terahertz radiation, which reaches several percent.
- ПубликацияОткрытый доступPowerful Elliptically Polarized Terahertz Radiation from Oscillating-Laser-Driven Discharge Surface Currents(2023) Dmitriev, E.; Bukharskii, N.; Korneev, P.; Дмитриев, Егор Олегович; Бухарский, Николай Дмитриевич; Корнеев, Филипп АлександровичThis work presents a general concept of an intense laser-driven source of strong electromagnetic waves, which can be used for obtaining powerful terahertz radiation with controlled polarization. It is shown that the irradiation of a solid target surface by short relativistic laser pulses at small angles provides the excitation of strong compact relativistic discharge current pulses, propagating in a certain direction. For elliptical targets, this current emits elliptically polarized electromagnetic radiation at a given frequency with the ellipticity and the spectra defined by the target geometry. The proposed setup allows reaching extreme THz intensities and provides easy control of the radiation parameters, making it attractive for various scientific and technological applications.
- ПубликацияОткрытый доступFormation of propagating current pulses on extended surfaces under grazing irradiation with relativistically intense ultrashort laser pulses(2025) Bukharskii, N.; Korneev, P.; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович
- ПубликацияОткрытый доступAdvanced plasma target from pre-ionized low-density foam for effective and robust direct laser acceleration of electrons(2025) Rosmej, O. N.; Gyrdymov, M.; Andreev, N. E.; Bukharskii, N.; Korneev, P.; Бухарский, Николай Дмитриевич; Корнеев, Филипп Александрович