Publication: Towards end-to-end deep learning performance analysis of electric motors
Дата
2021
Авторы
Gabdullin, N.
Madanzadeh, S.
Vilkin, A.
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
© 2021 by the authors.Convolutional Neural Networks (CNNs) and Deep Learning (DL) revolutionized numerous research fields including robotics, natural language processing, self-driving cars, healthcare, and others. However, DL is still relatively under-researched in physics and engineering. Recent works on DL-assisted analysis showed enormous potential of CNN applications in electrical engineering. This paper explores the possibility of developing an end-to-end DL analysis method to match or even surpass conventional analysis techniques such as finite element analysis (FEA) based on the ability of CNNs to predict the performance characteristics of electric machines. The required depth in CNN architecture is studied by comparing a simplistic CNN with three ResNet architectures. Studied CNNs show over 90% accuracy for an analysis conducted under a minute, whereas a FEA of comparable accuracy required 200 h. It is also shown that training CNNs to predict multidimensional outputs can improve CNN performance. Multidimensional output prediction with data-driven methods is further discussed in context of multiphysics analysis showing potential for developing analysis methods that might surpass FEA capabilities.
Описание
Ключевые слова
Цитирование
Gabdullin, N. Towards end-to-end deep learning performance analysis of electric motors / Gabdullin, N., Madanzadeh, S., Vilkin, A. // Actuators. - 2021. - 10. - № 2. - P. 1-18. - 10.3390/act10020028
URI
https://www.doi.org/10.3390/act10020028
https://www.scopus.com/record/display.uri?eid=2-s2.0-85100823653&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000621941300001
https://openrepository.mephi.ru/handle/123456789/23667
https://www.scopus.com/record/display.uri?eid=2-s2.0-85100823653&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000621941300001
https://openrepository.mephi.ru/handle/123456789/23667