Publication:
Memristive Element with Multiple Internal State Variables Functional Model for Computer Based Analysis and Hardware Emulation of Pulsed Neural Adaptive Networks

Дата
2020
Авторы
Alyushin, S. A.
Arkhangelsky, V. G.
Alyushin, A. V.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Выпуск журнала
Аннотация
© 2020 IEEE.A functional model of a memristive element (ME) with multiple internal state variables (ISV) is proposed. The dynamics of each of the ME ISV is determined by functional transformations of the ME input stimulus by the corresponding integral and differential form and time constant. ME functional model can be efficiently implemented in modern CAD systems based on a limited number of library components and allowing simple hardware emulation. Theoretical and experimental study of the proposed model with two ISVs and its hardware emulation for the mimicry of the sodium ion channel in the development of pulse neuron adaptive networks showed its adequate response to external influences, similar to the Hodgkin-Huxley model. Truncations of this model to the first order (1C1R1MOS) with one ISV exhibit the property of forward and reverse memristivity, can be applied to mimicry of potassium ion channels.
Описание
Ключевые слова
Цитирование
Alyushin, S. A. Memristive Element with Multiple Internal State Variables Functional Model for Computer Based Analysis and Hardware Emulation of Pulsed Neural Adaptive Networks / Alyushin, S.A., Arkhangelsky, V.G., Alyushin, A.V. // Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2020. - 2020. - P. 1755-1759. - 10.1109/EIConRus49466.2020.9038918
Коллекции