Publication:
The Russian language corpus and a neural network to analyse Internet tweet reports about Covid-19

Дата
2022
Авторы
Moloshnikov, I.
Naumov, A.
Levochkina, A.
Rybka, R.
Sboev, A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).This work is aimed at creating a tool for filtering messages from Twitter users by the presence of mentions of coronavirus disease in them. For this purpose, a corpus of Russian-language tweets was created, which contains the part of 10 thousand tweets that are manually divided into several classes with different levels of confidence: potentially have covid, have covid now, other cases, and an unmarked part – 2 million tweets on the topic of the pandemic. The paper presents the process of creating a corpus of tweets from the stage of data collection, their preliminary filtering and subsequent annotation according to the presence of disease description. Machine learning methods were compared according to classification task on tweets. It is shown that a model based on the XLM-RoBERTa topology with additional training on corpus of unmarked tweets gives the F1 score of 0.85 on binary classification task ("potentially have covid have covid now" vs "other"). This is 12% higher relative to the simplest model using TF-IDF encoding and SVM classifier and 5% higher relative to the RuDR-BERT-based model. The created toolkit will expand the feature space of models for predicting the spread of coronavirus infection and other pandemics by adding the dynamics of discussion on social networks, which characterizes people’s attitudes towards it.
Описание
Ключевые слова
Цитирование
The Russian language corpus and a neural network to analyse Internet tweet reports about Covid-19 / Moloshnikov, I. [et al.] // Proceedings of Science. - 2022. - 410. - 10.22323/1.410.0017
Коллекции