Publication:
Application of machine learning methods for risk analysis of unfavorable outcome of government procurement procedure in building and grounds maintenance domain

Дата
2021
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт финансовых технологий и экономической безопасности
Институт финансовых технологий и экономической безопасности (ИФТЭБ) Национального исследовательского ядерного университета "МИФИ" готовит кадры в интересах национальной системы по противодействию легализации (отмыванию) доходов, полученных преступным путем, и финансированию терроризма (ПОД/ФТ). Междисциплинарность образования позволит выпускникам ИФТЭБ НИЯУ МИФИ легко адаптироваться на современном рынке труда и в бизнес-среде.
Выпуск журнала
Аннотация
© 2020 Elsevier B.V.. All rights reserved.The article provides the results of applying machine learning methods for prediction of unfavorable outcome of the public procurement procedure in the building and grounds maintenance domain. Based on a comprehensive analysis of the domain it was decided to investigate the following risks: the risk of collusion among suppliers; the risk of conspiracy between customers and suppliers; the risk associated with inaccurate data in the Unified Information System. Usage of various classification techniques has been researched while modeling the problem in the domain. In order to form sustainable groups of suppliers, the association rule mining was done using the "Apriori" algorithm. While searching for representative characteristics of the groups of similar objects, the solution to the clustering problem was found using the Ward and K-means++ methods. The Cluster models, which were defined to analyze each of the collusion risks, were built on the feature space. The models make it possible to identify the most typical behavioral patterns of two suppliers with each other as well as the customer with the supplier.
Описание
Ключевые слова
Цитирование
Domashova, J. Application of machine learning methods for risk analysis of unfavorable outcome of government procurement procedure in building and grounds maintenance domain / Domashova, J., Kripak, E. // Procedia Computer Science. - 2021. - 190. - P. 171-177. - 10.1016/j.procs.2021.06.022
Коллекции