Publication:
Radiomics in Determining Tumor-to-Normal Brain SUV Ratio Based on11C-Methionine PET/CT in Glioblastoma

Дата
2023
Авторы
Danilov, G. V.
Kalaeva, D. B.
Vikhrova, N. B.
Konakova, T. A
Postnov, A. A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Выпуск журнала
Аннотация
"Modern methodology of PET/CT quantitative analysis in patients with glioblastomas is not strictly standardized in clinic settings and does not exclude the influence of the human factor.Methods of radiomics may facilitate unification, and improve objectivity and efficiency of the medical image analysis.The aim of the study is to evaluate the potential of radiomics in the analysis of PET/CT glioblastoma images identifying the relationship between the radiomic features and the 11 РЎ-methionine tumor-to-normal brain uptake ratio (TNR) determined by an expert in routine.Materials and Methods.PET/CT data (2018-2020) from 40 patients (average age was 55В±12 years; 77.5% were males) with a histologically confirmed diagnosis of ""glioblastoma"" were included in the analysis.TNR was calculated as a ratio of the standardized uptake value of 11 C-methionine measured in the tumor and intact tissue.Calculation of radiomic features for each PET was performed in the specified volumetric region of interest, capturing the tumor with the surrounding tissues.The relationship between TNR and the radiomic features was determined using the linear regression model.Predictors were included in the model following correlation analysis and LASSO regularization.The experiment with machine learning was repeated 300 times, splitting the training (70%) and test (30%) subsets randomly.The model quality metrics and predictor significance obtained in 300 tests were summarized.Results.Of 412 PET/CT radiomic parameters significantly correlated with TNR (p<0.05), the regularization procedure left no more than 30 in each model (the median number of predictors was 9 [7; 13]).The experiment has demonstrated a non-random linear correlation (the Spearman correlation coefficient was 0.58 [0.43; 0.74]) between TNR and separate radiomic features, primarily fractal dimensions, characterizing the geometrical properties of the image. Conclusion.Radiomics enabled an objective determination of PET/CT image texture features reflecting the biological activity of glioblastomas.Despite the existing limitations in the application, the first results provide a good perspective of these methods in neurooncology."
Описание
Ключевые слова
PET/CT , Cancer Imaging , Brain Tumor Epidemiology , Tumor Heterogeneity , Radiotherapy
Цитирование
Radiomics in Determining Tumor-to-Normal Brain SUV Ratio Based on11C-Methionine PET/CT in Glioblastoma / Danilov, G. V. [et al.] // Sovremennye Tehnologii v Medicine. - 2023. - 15. - № 1. - P. 5-11. - 10.17691/stm2023.15.1.01
Коллекции