Publication:
Application of machine learning methods for filling and updating nuclear knowledge bases

Дата
2023
Авторы
Telnov, V. P.
Korovin, Y. A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Выпуск журнала
Nuclear Energy and Technology
2023-9 - 2
Аннотация
The paper deals with issues of designing and creating knowledge bases in the field of nuclear science and technology. The authors present the results of searching for and testing optimal classification and semantic annotation algorithms applied to the textual network content for the convenience of computer-aided filling and updating of scalable semantic repositories (knowledge bases) in the field of nuclear physics and nuclear power engineering and, in the future, for other subject areas, both in Russian and English. The proposed algorithms will provide a methodological and technological basis for creating problem-oriented knowledge bases as artificial intelligence systems, as well as prerequisites for the development of semantic technologies for acquiring new knowledge on the Internet without direct human participation. Testing of the studied machine learning algorithms is carried out by the cross-validation method using corpora of specialized texts. The novelty of the presented study lies in the application of the Pareto optimality principle for multi-criteria evaluation and ranking of the studied algorithms in the absence of a priori information about the comparative significance of the criteria. The project is implemented in accordance with the Semantic Web standards (RDF, OWL, SPARQL, etc.). There are no technological restrictions for integrating the created knowledge bases with third-party data repositories as well as metasearch, library, reference or information and question-answer systems. The proposed software solutions are based on cloud computing using DBaaS and PaaS service models to ensure the scalability of data warehouses and network services. The created software is in the public domain and can be freely replicated.
Описание
Ключевые слова
Cloud computing , Semantic web , Knowledge base , Machine learning , Classification , Semantic annotation
Цитирование
Telnov VP, Korovin YuA (2023) Application of machine learning methods for filling and updating nuclear knowledge bases. Nuclear Energy and Technology 9(2): 115-120. https://doi.org/10.3897/nucet.9.106759
Коллекции