Publication:
A Neural Network Model to Include Textual Dependency Tree Structure in Gender Classification of Russian Text Author

Дата
2020
Авторы
Selivanov, A.
Rybka, R.
Moloshnikov, I.
Bogachev, D.
Sboev, A.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2020, Springer Nature Switzerland AG.The research proposes the neural network methods to include a textual dependency tree structure in classification tasks of Russian texts. Author profiling task of gender identification was chosen to test the models, and two corpora used in experiments: based on a crowdsource, and in-person polling. The first approach is based on a long short-term memory (LSTM) layers, and developed graph embedding algorithm. The second one is based on a graph convolution network and LSTM. Two syntactic parsers were used to obtain dependency trees from the texts. Input data was represented in different forms: morphological binary vectors, FastText vectors, and their combination. The developed models result was compared to the state-of-the-art, that is neural network model based on a convolutional and LSTM layers. Finally, we demonstrate that including textual dependency tree structure to input feature space improves f1-score of gender classification task on 4% for the RusPersonality dataset, and 7% for the crowdsource dataset in average. The developed models resulting f1-score is 84% and 83%, respectively.
Описание
Ключевые слова
Цитирование
A Neural Network Model to Include Textual Dependency Tree Structure in Gender Classification of Russian Text Author / Selivanov, A. [et al.] // Mechanisms and Machine Science. - 2020. - 80. - P. 405-412. - 10.1007/978-3-030-33491-8_48
Коллекции