Publication:
Depth-resolved thermal conductivity and damage in swift heavy ion irradiated metal oxides

Дата
2022
Авторы
Abdullaev, A.
Koshkinbayeva, A.
Chauhan, V.
Nurekeyev, Z.
Skuratov, V.
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Выпуск журнала
Аннотация
© 2022 The AuthorsWe investigated thermal transport in swift heavy ion (SHI) irradiated insulating single crystalline oxide materials: yttrium aluminum garnet- Y3Al5O12 (YAG), sapphire (Al2O3), zinc oxide (ZnO) and magnesium oxide (MgO) irradiated by 167 MeV Xe ions at 1012 – 1014 ions/cm2 fluences. Depth profiling of the thermal transport on nano- and micro- meter scales was assessed by time-domain thermoreflectance (TDTR) and modulated thermoreflectance (MTR) methods, respectively. This combination allowed us to isolate the conductivities of different sub-surface damage-regions characterized by their distinct microstructure evolution regimes. Thermal conductivity degradation in SHI irradiated YAG and Al2O3 is attributed to formation of ion tracks and subsequent amorphization, while in ZnO and MgO it is mostly due to point defects. Additionally, notably lower conductivity when probed by very low penetrating thermal waves is consistent with surface hillock formation. An analytical model based on Klemens-Callaway method for thermal conductivity coupled with a simplified microstructure evolution capturing saturation in defect concentration was used to obtain depth dependent damage across the ion impacted region. The studies showed that YAG has the highest damage profile resulting in the less dependence of thermal conductivity with the depth, while MgO on the contrary has the strongest dependence. The presented work sheds new light on how SHI induced defects affect thermal transport degradation and recovery of oxide ceramics as promising candidates for next generation nuclear reactor applications.
Описание
Ключевые слова
Цитирование
Depth-resolved thermal conductivity and damage in swift heavy ion irradiated metal oxides / Abdullaev, A. [et al.] // Journal of Nuclear Materials. - 2022. - 561. - 10.1016/j.jnucmat.2022.153563
Коллекции