Publication:
Deep learning approaches to mid-term forecasting of social-economic and demographic effects of a pandemic

dc.contributor.authorDevyatkin, D.
dc.contributor.authorOtmakhova, Y.
dc.contributor.authorUsenko, N.
dc.contributor.authorSochenkov, I.
dc.contributor.authorBudzko, V.
dc.contributor.authorБудзко, Владимир Игоревич
dc.date.accessioned2024-11-29T19:13:56Z
dc.date.available2024-11-29T19:13:56Z
dc.date.issued2021
dc.description.abstract© 2020 Elsevier B.V.. All rights reserved.The COVID-19 outburst has brought serious demographical, economic, and social impacts. Moreover, in large countries, these consequences can vary from region to region. Therefore, authorities and experts lack the models to predict these various impacts at the regional level. This paper presents deep neural network models to do a mid-term forecast of the COVID-19 effect in the Russian regions. The models are based on the various recurrent and sliding-window architectures and utilize the attention mechanism to consider the indicators of the neighbor regions. These models are trained on various data, including daily cases and deaths, the diseased age structure, transport availability of the regions, and the unemployment rate. The experimental evaluation of the models shows that the demographic and healthcare indicators can significantly improve mid-term economic impact prediction accuracy. We also revealed that the neighboring regions' data helps predict the pandemic's healthcare and demographical impact. Namely, we have detected improvement for both the number of infected and the death rate.
dc.format.extentС. 156-163
dc.identifier.citationDeep learning approaches to mid-term forecasting of social-economic and demographic effects of a pandemic / Devyatkin, D. [et al.] // Procedia Computer Science. - 2021. - 190. - P. 156-163. - 10.1016/j.procs.2021.06.020
dc.identifier.doi10.1016/j.procs.2021.06.020
dc.identifier.urihttps://www.doi.org/10.1016/j.procs.2021.06.020
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85112594547&origin=resultslist
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/24561
dc.relation.ispartofProcedia Computer Science
dc.titleDeep learning approaches to mid-term forecasting of social-economic and demographic effects of a pandemic
dc.typeConference Paper
dspace.entity.typePublication
oaire.citation.volume190
relation.isAuthorOfPublication1048250e-cd6f-4640-bdb6-77fb6f279ea9
relation.isAuthorOfPublication.latestForDiscovery1048250e-cd6f-4640-bdb6-77fb6f279ea9
relation.isOrgUnitOfPublication010157d0-1f75-46b2-ab5b-712e3424b4f5
relation.isOrgUnitOfPublication.latestForDiscovery010157d0-1f75-46b2-ab5b-712e3424b4f5
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W3185416666.pdf
Size:
743.07 KB
Format:
Adobe Portable Document Format
Description:
Коллекции