Publication:
Analytical features of the SIR model and their applications to COVID-19

dc.contributor.authorVigdorowitsch, M.
dc.contributor.authorKudryashov, N. A.
dc.contributor.authorChmykhov, M. A.
dc.contributor.authorКудряшов, Николай Алексеевич
dc.contributor.authorЧмыхов, Михаил Александрович
dc.date.accessioned2024-11-29T10:24:00Z
dc.date.available2024-11-29T10:24:00Z
dc.date.issued2021
dc.description.abstract© 2020 Elsevier Inc.A classic two-parameter epidemiological SIR-model of the coronavirus propagation is considered. The first integrals of the system of non-linear equations are obtained. The Painlevé test shows that the system of equations is not integrable in the general case. However, the general solution is obtained in quadrature as an inverse time-function. Using the first integrals of the system of equations, analytical dependencies for the number of infected patients I(t) and that of recovered patients R(t) on the number of susceptible to infection S(t) are obtained. A particular attention is paid to interrelation of I(t) and R(t) both depending on α/β, where α is the contact rate in the community and β is the intensity of recovery/decease of patients. It is demonstrated that the data on particular morbidity waves in Hubei (China), Italy, Austria, South Korea, Moscow (Russia) as well some Australian territories are satisfactorily described by the expressions obtained for I(R). The variability of parameter N having been traditionally considered as a static population size is discussed.
dc.format.extentС. 466-473
dc.identifier.citationVigdorowitsch, M. Analytical features of the SIR model and their applications to COVID-19 / Vigdorowitsch, M., Kudryashov, N.A., Chmykhov, M.A. // Applied Mathematical Modelling. - 2021. - 90. - P. 466-473. - 10.1016/j.apm.2020.08.057
dc.identifier.doi10.1016/j.apm.2020.08.057
dc.identifier.urihttps://www.doi.org/10.1016/j.apm.2020.08.057
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85091974707&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000590672100005
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/23445
dc.relation.ispartofApplied Mathematical Modelling
dc.titleAnalytical features of the SIR model and their applications to COVID-19
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume90
relation.isAuthorOfPublicationffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isAuthorOfPublicationab6779e5-fadc-49e0-a6f1-998c4dc145e4
relation.isAuthorOfPublication.latestForDiscoveryffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isOrgUnitOfPublicationdcdb137c-0528-46a5-841b-780227a67cce
relation.isOrgUnitOfPublication.latestForDiscoverydcdb137c-0528-46a5-841b-780227a67cce
Файлы
Original bundle
Теперь показываю 1 - 1 из 1
Загружается...
Уменьшенное изображение
Name:
W3088403292.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Коллекции