Publication:
Mathematical model with unrestricted dispersion and polynomial nonlinearity

dc.contributor.authorKudryashov, N. A.
dc.contributor.authorКудряшов, Николай Алексеевич
dc.date.accessioned2024-12-28T08:16:31Z
dc.date.available2024-12-28T08:16:31Z
dc.date.issued2023
dc.description.abstractThe family of generalized nonlinear Schrödinger equations with unrestricted dispersion and polynomial nonlinearity is considered. The Painlevé test is used to study the integrability of differential equations. It is shown that all equations of the family do not pass the Painlevé test and the Cauchy problem cannot be solved by the inverse scattering transform. It is proved that there are two arbitrary constants in the expansion into the Laurent series of the general solution. The new version of the simplest equation method is used for finding optical and embedded solitons of the family of differential equations.
dc.identifier.citationKudryashov, N. A. Mathematical model with unrestricted dispersion and polynomial nonlinearity / Kudryashov, N.A. // Applied Mathematics Letters. - 2023. - 138. - 10.1016/j.aml.2022.108519
dc.identifier.doi10.1016/j.aml.2022.108519
dc.identifier.urihttps://www.doi.org/10.1016/j.aml.2022.108519
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85145347575&origin=resultslist
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000904842200001
dc.identifier.urihttps://openrepository.mephi.ru/handle/123456789/29895
dc.relation.ispartofApplied Mathematics Letters
dc.titleMathematical model with unrestricted dispersion and polynomial nonlinearity
dc.typeArticle
dspace.entity.typePublication
oaire.citation.volume138
relation.isAuthorOfPublicationffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isAuthorOfPublication.latestForDiscoveryffa3e9b3-afd3-483c-a8cf-dd71c76020c4
relation.isOrgUnitOfPublicationdcdb137c-0528-46a5-841b-780227a67cce
relation.isOrgUnitOfPublication.latestForDiscoverydcdb137c-0528-46a5-841b-780227a67cce
Файлы
Коллекции