Publication: Mathematical model with unrestricted dispersion and polynomial nonlinearity
Дата
2023
Авторы
Kudryashov, N. A.
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
The family of generalized nonlinear Schrödinger equations with unrestricted dispersion and polynomial nonlinearity is considered. The Painlevé test is used to study the integrability of differential equations. It is shown that all equations of the family do not pass the Painlevé test and the Cauchy problem cannot be solved by the inverse scattering transform. It is proved that there are two arbitrary constants in the expansion into the Laurent series of the general solution. The new version of the simplest equation method is used for finding optical and embedded solitons of the family of differential equations.
Описание
Ключевые слова
Цитирование
Kudryashov, N. A. Mathematical model with unrestricted dispersion and polynomial nonlinearity / Kudryashov, N.A. // Applied Mathematics Letters. - 2023. - 138. - 10.1016/j.aml.2022.108519
URI
https://www.doi.org/10.1016/j.aml.2022.108519
https://www.scopus.com/record/display.uri?eid=2-s2.0-85145347575&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000904842200001
https://openrepository.mephi.ru/handle/123456789/29895
https://www.scopus.com/record/display.uri?eid=2-s2.0-85145347575&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000904842200001
https://openrepository.mephi.ru/handle/123456789/29895