Publication:
A New Visual Analytics Toolkit for ATLAS Computing Metadata

Дата
2020
Авторы
Grigorieva, M. A.
Alekseev, A. A.
Galkin, T. P.
Klimentov, A. A.
Pilyugin, V. V.
Journal Title
Journal ISSN
Volume Title
Издатель
Организационные подразделения
Организационная единица
Институт интеллектуальных кибернетических систем
Цель ИИКС и стратегия развития - это подготовка кадров, способных противостоять современным угрозам и вызовам, обладающих знаниями и компетенциями в области кибернетики, информационной и финансовой безопасности для решения задач разработки базового программного обеспечения, повышения защищенности критически важных информационных систем и противодействия отмыванию денег, полученных преступным путем, и финансированию терроризма.
Выпуск журнала
Аннотация
The ATLAS experiment at the Large Hadron Collider has a complex heterogeneous distributed computing infrastructure, which is used to process and analyse exabytes of data. Metadata are collected and stored at all stages of data processing and physics analysis. All metadata could be divided into operational metadata to be used for the quasi on-line monitoring, and archival to study the behaviour of corresponding systems over a given period of time (i.e. long-term data analysis). Ensuring the stability and efficiency of complex and large-scale systems, such as those in the ATLAS Computing, requires sophisticated monitoring tools, and the long-term monitoring data analysis becomes as important as the monitoring itself. Archival metadata, which contains a lot of metrics (hardware and software environment descriptions, network states, application parameters, errors) accumulated for more than a decade, can be successfully processed by various machine learning (ML) algorithms for classification, clustering and dimensionality reduction. However, the ML data analysis, despite the massive use, is not without shortcomings: the underlying algorithms are usually treated as "black boxes", as there are no effective techniques for understanding their internal mechanisms. As a result, the data analysis suffers from the lack of human supervision. Moreover, sometimes the conclusions made by algorithms may not be making sense with regard to the real data model. In this work we will demonstrate how the interactive data visualization can be applied to extend the routine ML data analysis methods. Visualization allows an active use of human spatial thinking to identify new tendencies and patterns found in the collected data, avoiding the necessity of struggling with the instrumental analytics tools. The architecture and the corresponding prototype of Interactive Visual Explorer (InVEx) - visual analytics toolkit for the multidimensional data analysis of ATLAS computing metadata will be presented. The web-application part of the prototype provides an interactive visual clusterization of ATLAS computing jobs, search for computing jobs non-trivial behaviour and its possible reasons.
Описание
Ключевые слова
Цитирование
A New Visual Analytics Toolkit for ATLAS Computing Metadata / Grigorieva, MA [et al.] // Journal of Physics: Conference Series. - 2020. - 1525. - 10.1088/1742-6596/1525/1/012086
Коллекции