Publication:
Neural-network method for determining text author's sentiment to an aspect specified by the named entity

Дата
2020
Авторы
Journal Title
Journal ISSN
Volume Title
Издатель
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Выпуск журнала
Аннотация
© 2020 Copyright for this paper by its authors.This study presents the approach to aspect-based sentiment analysis where a named entity of a certain category is considered as an aspect. Such task formulation is a novelty and opens up the opportunity to determine writers' attitudes to organizations and people considered in texts. This task required a dataset of Russian-language sentences where sentiment with respect to certain named entities would be labeled, which we collected using a crowdsourcing platform. Sentiment determination is based on a deep neural network with attention mechanism and ELMo language model for word vector representation. The proposed model is validated on available data on a similar task. The resulting performance (by the f1-micro metric) on the collected dataset is 0.72, which is the new state of the art for the Russian language.
Описание
Ключевые слова
Цитирование
Neural-network method for determining text author's sentiment to an aspect specified by the named entity / Naumov, A. [et al.] // CEUR Workshop Proceedings. - 2020. - 2648. - P. 134-143
Коллекции