Publication: Critical Evolution of Finite Perturbations of a Water Evaporation Surface in Porous Media
Дата
2020
Авторы
Il'ichev, A. T.
Gorkunov, S. V.
Shargatov, V. A.
Journal Title
Journal ISSN
Volume Title
Издатель
Аннотация
© 2020, Pleiades Publishing, Ltd.Abstract—: It is shown that the approximate steady-state solutions, which satisfy the model dissipative equation that describes the process of water evaporation in the neighborhood of the instability threshold of a phase transition interface, determine localized damped finite-amplitude perturbations when a certain condition is fulfilled. These steady-state solutions can be used for forecasting the scenario of the development of a perturbation with sufficient accuracy if this perturbation has no common points with any steady-state solution. If the initial position of the phase transition front is located between the spectrally stable solution and any of the steady-state solutions, this front damps. If the initial position of the front is located above at least one of the spectrally unstable steady-state solutions, then the solution is catastrophically restructured.
Описание
Ключевые слова
Цитирование
Il'ichev, A. T. Critical Evolution of Finite Perturbations of a Water Evaporation Surface in Porous Media / Il'ichev, A.T., Gorkunov, S.V., Shargatov, V.A. // Fluid Dynamics. - 2020. - 55. - № 2. - P. 204-212. - 10.1134/S0015462820020044
URI
https://www.doi.org/10.1134/S0015462820020044
https://www.scopus.com/record/display.uri?eid=2-s2.0-85083428520&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000526810400007
https://openrepository.mephi.ru/handle/123456789/21541
https://www.scopus.com/record/display.uri?eid=2-s2.0-85083428520&origin=resultslist
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000526810400007
https://openrepository.mephi.ru/handle/123456789/21541