Персона: Кудряшов, Николай Алексеевич
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт лазерных и плазменных технологий
Стратегическая цель Института ЛаПлаз – стать ведущей научной школой и ядром развития инноваций по лазерным, плазменным, радиационным и ускорительным технологиям, с уникальными образовательными программами, востребованными на российском и мировом рынке образовательных услуг.
Статус
Фамилия
Кудряшов
Имя
Николай Алексеевич
Имя
4 results
Результаты поиска
Теперь показываю 1 - 4 из 4
- ПубликацияОткрытый доступОб особенностях формирования полос локализованной деформации в обедненном уране(2024) Муратов, Р. В.; Рябов, П. Н.; Кудряшов, Н. А.; Кудряшов, Николай Алексеевич; Муратов, Родион Владимирович; Рябов, Павел НиколаевичРассматриваются процессы локализации пластической деформации в образцах из обедненного урана DU-0.75Ti, подвергаемых высокоскоростным сдвиговым деформациям. Сформулирована математичеческая модель, описывающая данный процесс в одномерном и двумерном случае. Предложен численный алгоритм, позволяющий проводить математическое моделирование рассматриваемых процессов. Проведена серия вычислительных экспериментов по высокоскоростному нагружению образцов из обеденного урана. Исследована динамика локализационного процесса в зависимости от начальной скорости пластической деформации. Получены значения полей температур, скоростей, напряжеий и деформаций. Исследовано влияние размерности задачи на ряд важнейших характеристик локализационного процесса.
- ПубликацияОткрытый доступОб особенностях численного подхода построенного на нейронных сетях с прямой связью для решения задач для дифференциальных уравнений(2024) Ладыгин, С. А.; Карачурин, Р. Н.; Рябов, П. Н.; Кудряшов, Н. А.; Карачурин, Рауль Нуриевич; Ладыгин, Станислав Аркадьевич; Кудряшов, Николай Алексеевич; Рябов, Павел НиколаевичНа сегодняшний день разработано множество методов численного решения задач, в основе которых лежат обыкновенные дифференциальные уравнения (ОДУ) и уравнения в частных производных (УЧП). Самые распространенные из них это конечно-разностный метод, метод конечных элементов и метод конечных объемов. В данной работе реализован альтернативный численный подход, базирующийся на аппроксимации функций нейронными сетями с прямой связью. Полученное с использованием такого подхода решение, представляeт собой дифференцируемое аналитическое выражение чем существенно отличается от других методов, предлагающих либо дискретное решение, либо решение с ограниченной дифференцируемостью. В работе проведено исследование влияния параметров нейронной сети (таких, как функции активации и веса в функции ошибок) на скорость сходимости и точность полученной аппроксимации решения для трех типов дифференциальных уравнений: обыкновенные дифференциальные уравнения, интегрируемые дифференциальные уравнения в частных производных и неинтегрируемые дифференциальные уравнения в частных производных. В качестве модельных уравнений в работе рассматривались уравнения в частных производных Кортевега–де Вриза и Кудряшова–Синельщикова, а также обыкновенное дифференциальное уравнений второго порядка. В каждом вышеописанном случае найдены оптимальные соотношения между весовыми коэффициентами. Установлены наиболее эффективные функции активации для каждой задачи.
- ПубликацияОткрытый доступStatistical features of plastic flow localization in materials(2019) Kudryashov, N. A.; Muratov, R. V.; Ryabov, P. N.; Кудряшов, Николай Алексеевич; Муратов, Родион Владимирович; Рябов, Павел Николаевич© 2019 Published under licence by IOP Publishing Ltd.We consider the processes of plastic flow localization in dipolar materials undergoing high speed shear deformations. The mathematical model of the processes of plastic flow localization is formulated taking into account dipolar effect. We introduce the numerical algorithm which is based on adaptive mesh refinement technique. We show that this algorithm allows to increase performance of computations. We also studied the statistical properties of shear bands formation. We show that dipolar effect changes average characteristics of the processes considered such as average temperature, stress and etc. Moreover this effect leads to increase in initiation time, changes the widths of localization zones and distances between them.
- ПубликацияОткрытый доступNumerical simulation of adiabatic shear bands formation processes on two-dimensional eulerian meshes(2020) Muratov, R. V.; Kudryashov, N. A.; Ryabov, P. N.; Муратов, Родион Владимирович; Кудряшов, Николай Алексеевич; Рябов, Павел Николаевич© Published under licence by IOP Publishing Ltd.In this work we suggest a mathematical model of motion of the elasto-plastic materials with nonlinear plasticity constitutive law; we also propose an effective numerical method for numerical simulations of such tasks on two-dimensional eulerian meshes. Based on the method, we research formation of multiple adiabatic shear bands (ASB) at high-speed shear deformations. We test our approach on two-dimensional problem where the initial heterogeneity of temperature leads to formation of adiabatic shear band.