Персона: Харитонов, Владимир Степанович
Загружается...
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Руководитель научной группы "Теплогидравлика реакторов с водой сверхкритического давления"
Фамилия
Харитонов
Имя
Владимир Степанович
Имя
2 results
Результаты поиска
Теперь показываю 1 - 2 из 2
- ПубликацияТолько метаданныеNumerical Simulation of Thermal–Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation(2019) Chudanov, V. V.; Aksenova, A. E.; Pervichko, V. A.; Korsun, A. S.; Merinov, I. G.; Kharitonov, V. S.; Bayaskhalanov, M. V.; Корсун, Александр Сергеевич; Меринов, Игорь Геннадьевич; Харитонов, Владимир Степанович; Баясхаланов, Михаил Валерьевич© 2019, Pleiades Publishing, Inc.Abstract—: The article presents an anisotropic porous body model in which the transfer anisotropy is taken into account through determining—by means of tensor analysis techniques—the drag force, effective viscosity, and thermal conductivity. The model is intended for describing heat-and-mass transfer in fuel assemblies and tube bundles. For closing the system of anisotropic porous body equations, the integral turbulence model developed by the authors is used. To verify how correctly the hydrodynamics and heat transfer are described, a few hydrodynamic and thermal–hydraulic processes in water- and liquid-metal-cooled fuel rod assemblies are simulated in the anisotropic porous body approximation. The results from simulating the flow patterns of lead–bismuth eutectics in the experimental 19-rod assembly and water in a 61-rod nonheated assembly with its flow cross-section locally blocked in the central and corner parts are presented. The thermal–hydraulic processes in the BREST reactor fuel assembly’s heated 19-rod fragment with its flow cross-section locally blocked in the central part were also simulated using the CONV-3D DNS code in the framework of model cross-verification activities. The numerical analysis was carried out using the developed APMod software module implementing the anisotropic porous body model jointly with the integral turbulence model. It was demonstrated from a comparison of the numerical analysis results with both experimental data and simulation results obtained using the CONV-3D computer code that the APMod software module adequately describes the 3D fields of coolant velocities, pressure, and temperature arising in fuel rod assemblies with a locally blocked part of their flow section. The obtained results testify that the anisotropic porous body model can be used for simulating thermal–hydraulic processes in the cores and heat-transfer equipment of prospective reactors.
- ПубликацияОткрытый доступInherent Safety Characteristics of Advanced Fast Reactors(IOP Publishing Ltd, 2017) Bochkarev, A. S.; Korsun, A. S.; Kharitonov, V. S.; Alekseev, P. N.; Бочкарев, Алексей Сергеевич; Харитонов, Владимир Степанович; Корсун, Александр СергеевичThe study presents SFR transient performance for ULOF events initiated by pump trip and pump seizure with simultaneous failure of all shutdown systems in both cases. The most severe cases leading to the pin cladding rupture and possible sodium boiling are demonstrated. The impact of various features on SFR inherent safety performance for ULOF events was analysed. The decrease in hydraulic resistance of primary loop and increase in primary pump coast down time were investigated. Performing analysis resulted in a set of recommendations to varying parameters for the purpose of enhancing the inherent safety performance of SFR. In order to prevent the safety barrier rupture for ULOF events the set of thermal hydraulic criteria defining the ULOF transient processes dynamics and requirements to these criteria were recommended based on achieved results: primary sodium flow dip under the natural circulation asymptotic level and natural circulation rise time.