Персона:
Попова-Кузнецова, Елена Алефтиновна

Загружается...
Profile Picture
Email Address
Birth Date
Научные группы
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Попова-Кузнецова
Имя
Елена Алефтиновна
Имя

Результаты поиска

Теперь показываю 1 - 4 из 4
Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Colloidal samarium oxide nanoparticles prepared by femtosecond laser ablation and fragmentation for nuclear nanomedicine

2020, Duflot, V. R., Popova-Kuznetsova, E., Tikhonowski, G., Popov, A. A., Deyev, S. M., Klimentov, S. M., Zavestovskaya, I. N., Prasad, P. N., Kabashin, A. V., Попова-Кузнецова, Елена Алефтиновна, Тихоновский, Глеб Валерьевич, Попов, Антон Александрович, Деев, Сергей Михайлович, Климентов, Сергей Михайлович, Завестовская, Ирина Николаевна, Кабашин, Андрей Викторович

© 2020 SPIE.Nanotechnology promises a major improvement of efficacy of nuclear medicine by targeted delivery of radioactive agents to tumors, but this approach still needs novel efficient nanoformulations to maximize diagnostic and therapeutic functions. Here, we present a two-step method of laser ablation and fragmentation in water to produce non-radioactive 152Sm-enriched samarium oxide nanoparticles (Sm NPs), which can be converted to radioactive form of 153Sm beta-emitters by neutron capture reaction. We found that laser ablation in deionized water leads to the formation of NPs having diverse morphology and broad size dispersion. To improve size characteristics of formed NPs, we applied additional femtosecond laser fragmentation step, which made possible a good control of mean NPs size under a drastic narrowing of size dispersion, and the spherical shape of formed NPs. Obtained colloidal solutions of Sm NPs were stable for several weeks after the synthesis. The formed NPs present a very promising object for nuclear nanomedicine.

Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Laser-ablative synthesis of stable size-tunable Bi nanoparticles and their functionalization for radiotherapy applications

2021, Tikhonowski, G. V., Popov, A. A., Popova-Kuznetsova, E. A., Klimentov, S. M., Prasad, P. N., Kabashin, A. V., Тихоновский, Глеб Валерьевич, Попов, Антон Александрович, Попова-Кузнецова, Елена Алефтиновна, Климентов, Сергей Михайлович, Кабашин, Андрей Викторович

© 2021 Institute of Physics Publishing. All rights reserved.Nanoformulations of high-Z elements can improve therapeutic outcome in radiotherapy-based treatment of tumors, but current nanomedicine implementations in radiotherapy still need biocompatible, non-toxic nano-agents exhibiting low polydispersity and high colloidal stability. Here, we elaborate methods of femtosecond (fs) laser ablation in water and organic solvents to fabricate stable aqueous colloidal solutions of ultrapure elemental Bi nanoparticles (NPs) and characterize them. We show that fs laser ablation of Bi target leads to the formation of spherical elemental Bi NPs having 25 nm mean size and wide size-dispersion. NPs prepared in water undergo fast conversion into 400-500 nm flake-like nanosheets, while NPs prepared in acetone demonstrate a high colloidal stability. We then employ methods of fs laser fragmentation to control mean size and size dispersion of Bi NPs. Stable aqueous solution of Bi NPs suitable for biomedical applications can be obtained by coating with Pluronic® F-127. We finally show that surface modification of Bi NPs increases its colloidal stability in phosphate buffer saline (PBS) solution by more than 6 fold. Exempt of any toxic synthetic by-products, laser-ablated Bi NPs present a novel appealing nanoplatform for image-guided combination photo- and radiotherapy.

Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Effect of Oxygen on Colloidal Stability of Titanium Nitride Nanoparticles Synthesized by Laser Ablation in Liquids

2021, Tikhonowski, G. V., Popova-Kuznetsova, E. A., Aleshchenko, Y. A., Klimentov, S. M., Kabashin, A. V., Popov, A. A., Тихоновский, Глеб Валерьевич, Попова-Кузнецова, Елена Алефтиновна, Алещенко, Юрий Анатольевич, Климентов, Сергей Михайлович, Кабашин, Андрей Викторович, Попов, Антон Александрович

© 2021, Allerton Press, Inc.Abstract: The effect of oxygen existing in an ablation medium during synthesis of titanium nitride (TiN) nanoparticles (NPs) by pulsed laser ablation in liquid (PLAL) on colloidal stability of obtained solutions was studied. It was shown that an increase in the oxygen content both incorporated in liquid molecules and in the form of dissolved gas increases the colloidal stability of synthesized NPs. The results obtained extend the range of available methods for developing new nanomaterials due to control of colloidal stability of laser-synthesized NPs.

Загружается...
Уменьшенное изображение
Публикация
Только метаданные

Comparison of pharmacokinetics and biodistribution of laser-synthesized plasmonic Au and TiN nanoparticles

2021, Tselikov, G. I., Al-Kattan, A., Bailly, A. -L., Correard, F., Popov, A. A., Zelepukin, I. V., Tikhonowski, G. V., Popova-Kuznetsova, E. A., Klimentov, S. M., Deyev, S. M., Kabashin, A. V., Попов, Антон Александрович, Тихоновский, Глеб Валерьевич, Попова-Кузнецова, Елена Алефтиновна, Климентов, Сергей Михайлович, Деев, Сергей Михайлович, Кабашин, Андрей Викторович

© 2021 Institute of Physics Publishing. All rights reserved.Plasmonic nanostructures offer wide range of diagnostic and therapeutic functionalities for biomedical applications. Gold nanoparticles (Au NPs) present one of the most explored nanomaterial in this field, while titanium nitride nanoparticles (TiN NPs) is a new promising nanomaterial with superior plasmonic properties for biomedicine. However conventional chemical techniques for the synthesis of these nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au and TiN NPs offer exceptional purity (no contamination by by-products or ligands) and unusual surface chemistry. Therefore, these NPs present a viable alternative to chemically synthesized counterparts. This work presents comparative analysis of pharmacokinetics and biodistribution of laser-synthesized 20 nm Au and TiN NPs under intravenous administration in mice model. Our data show that Au NPs and bare TiN NPs are rapidly eliminated from the blood circulation and accumulate preferentially in liver and spleen, while coating of TiN NPs by hydrophilic polymer polyethylene glycol (PEG) significantly prolongates blood circulation time and improves delivery of the NPs to tumor. We finally discuss potential applications of laser synthesized Au NPs in SERS, SEIRA and electrocatalysis, while TiN nanoparticles are considered as promising agents for photothermal therapy and photoacoustic imaging.