Персона:
Завестовская, Ирина Николаевна

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Инженерно-физический институт биомедицины
Цель ИФИБ и стратегия развития – это подготовка высококвалифицированных кадров на базе передовых исследований и разработок новых перспективных методов и материалов в области инженерно-физической биомедицины. Занятие лидерских позиций в биомедицинских технологиях XXI века и внедрение их в образовательный процесс, что отвечает решению практикоориентированной задачи мирового уровня – диагностике и терапии на клеточном уровне социально-значимых заболеваний человека.
Статус
Фамилия
Завестовская
Имя
Ирина Николаевна
Имя

Результаты поиска

Теперь показываю 1 - 5 из 5
  • Публикация
    Открытый доступ
    Создание композитов Bi@SiO2 со структурой ядро@оболочка на основе лазерно-синтезированных наночастиц Bi
    (2023) Скрибицкая, А. В.; Короткова, Н. А.; Котельникова, П. А.; Тихоновский, Г. В.; Попов, А. А.; Климентов, С. М.; Завестовская, И. Н.; Кабашин, А. В.; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович; Попов, Антон Александрович; Скрибицкая, Ангелина Вячеславовна; Тихоновский, Глеб Валерьевич
    Разработана методика получения нанокомпозитов по типу ядро@оболочка путём поверхностной модификации лазерно-синтезированных наночастиц (НЧ) висмута тетраэтоксисиланом с конечной структурной формулой Bi@SiO2. Показано, что покрытие НЧ Bi оболочкой из SiO2 приводит к образованию сферических наноформуляций с модой размерного распределения 250 – 300 нм. Разработанная методика, позволяющая создавать биосовместимые нанокомпозиты на основе Bi для сенсибилизации мультимодальной тераностики, является новой перспективной альтернативой традиционным методам.
  • Публикация
    Открытый доступ
    Pентгеноконтрастные свойства наноформуляций на основе висмута
    (2023) Савинов, М. С.; Грязнова, О. Ю.; Тихоновский, Г. В.; Попов, А. А.; Завестовская, И. Н.; Климентов, С. М.; Кабашин, А. В.; Завестовская, Ирина Николаевна; Кабашин, Андрей Викторович; Климентов, Сергей Михайлович
    Исследуется возможность использования наночастиц элементного висмута в качестве сенсибилизаторов радиационной терапии и контрастных агентов компьютерной томографии. Проводится сравнительный анализ рентгеноконтрастных свойств наночастиц висмута с классическими наночастицами золота и нанолистами оксихлорида висмута. Показано, что лазерно-синтезированные наночастицы висмута демонстрируют более высокую эффективность контрастирования рентгеновского излучения по сравнению с традиционными наночастицами золота, а также обладают схожими рентгеноконтрастными свойствами с химически синтезированными аналогами на основе нанолистов оксихлорида висмута. Уникальные физико-химические характеристики в сочетании с высокими рентгеноконтрастными свойствами лазерно-синтезированных наночастиц висмута формируют новую перспективную альтернативу традиционным сенсибилизаторам радиационной тераностики онкологических заболеваний.
  • Публикация
    Открытый доступ
    Спектральная зависимость фотоинактивации бычьего коронавируса излучением UV-A, UV-B и UV-C cветодиодов
    (2024) Завестовская, И. Н.; Фроня, А. А.; Тупицын, И. М.; Гущин, В. А.; Синявин, А. Э.; Руссу, Л. И.; Чешев, Е. А.; Коромыслов, А. Л.; Григорьева, М. С.; Маврешко, Е. И.; Маврешко, Егор Игоревич; Завестовская, Ирина Николаевна; Григорьева, Мария Сергеевна; Фроня, Анастасия Андреевна; Чешев, Евгений Анатольевич
    Представлены результаты экспериментальных исследований по воздействию ультрафиолетового (UV) излучения в широком спектральном диапазоне 270 – 405 нм на бычий коронавирус. Определена чувствительность бычьего коронавируса к UV излучению, проведен сравнительный анализ данных, построены спектры действия. Показано, что в диапазоне UV-A возможна инактивации бычьего коронавируса, что позволит подобрать безопасные источники излучения для использования в общественных местах в присутствии человека
  • Публикация
    Открытый доступ
    Способ получения пленочного сцинтиллятора
    (2024) Завестовская, И. Н.; Белихин, М. А.; Шемяков, А. Е.; Пряничников, А. А.; Завестовская, Ирина Николаевна
    Изобретение относится к области ядерной физики. Способ получения пленочного сцинтиллятора дополнительно содержит этапы, на которых получают смесь эпоксидной смолы и полиуретана в соотношении 1:1, затем в 0,6 г полученной смеси добавляют фенилметан в количестве 1200 мкл и перемешивают полученную смесь в течение 30 мин, а затем в полученную смесь добавляют порошок оксисульфата гадолиния, активированного тербием, в количестве 1000 мг и перемешивают полученную смесь в течение 30 минут, затем полученную смесь в количестве 1000 мкл наносят на основу, представляющую собой пленку из полимерного материала толщиной 10 мкм, с образованием сцинтиллирующего слоя толщиной 5-20 мкм, а затем основу с образованным сцинтиллирующим слоем подвергают центрифугированию при 2000 об/мин и сушке при нормальных лабораторных условиях в течение 2 часов. Технический результат – повышение интенсивности светового сигнала, повышение чувствительности детектирования пучков протонов. 2 ил., 2 табл.
  • Публикация
    Открытый доступ
    УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ПУЧКА НИЗКОЭНЕРГЕТИЧНЫХ НЕЙТРОНОВ НА ПРОТОННОМ УСКОРИТЕЛЕ КОМПЛЕКСА "ПРОМЕТЕУС"
    (Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук, 2024) Сиксин, В. В.; Рябов, В. А.; Завестовская, И. Н.; Завестовская, Ирина Николаевна
    Изобретение относится к области измерений ядерных излучений. Устройство для формирования пучка низкоэнергетичных нейтронов содержит расположенные последовательно на одной продольной оси протонный ускоритель, протонный канал, мишень, первый замедлитель в форме усеченного конуса, окруженный средством, предназначенным для поглощения излучения для получения направленного потока низкоэнергетичных нейтронов, при этом после первого замедлителя последовательно на одной продольной оси с ним устройство снабжено вторым замедлителем в форме диска и средством для замедления и отражения нейтронов, выполненным в виде цилиндра, состоящего из двух сегментов, расположенных вплотную друг к другу, а также содержит отражатель и нейтронный канал. Технический результат – возможность изменения направления пучка нейтронов непосредственно во время сеанса лучевой терапии, а также возможность получения пучка нейтронов без потери его плотности. 1 з.п. ф-лы, 1 ил., 1 табл.