Персона:
Куликов, Евгений Геннадьевич

Загружается...
Profile Picture
Email Address
Birth Date
Организационные подразделения
Организационная единица
Институт ядерной физики и технологий
Цель ИЯФиТ и стратегия развития - создание и развитие научно-образовательного центра мирового уровня в области ядерной физики и технологий, радиационного материаловедения, физики элементарных частиц, астрофизики и космофизики.
Статус
Фамилия
Куликов
Имя
Евгений Геннадьевич
Имя

Результаты поиска

Теперь показываю 1 - 4 из 4
  • Публикация
    Открытый доступ
    Assessment of the possibility for large-scale 238Pu production in a VVER-1000 power reactor
    (2023) Shmelev, A. N.; Geraskin, N. I.; Apse, V. A.; Kulikov, G. G.; Kulikov, E. G.; Glebov, V. B.; Глебов, Василий Борисович; Куликов, Евгений Геннадьевич; Куликов, Геннадий Генрихович; Апсэ, Владимир Александрович; Гераскин, Николай Иванович
    The paper presents the estimates for the possibility for large-scale production of 238Pu in the core of a VVER-1000 power reactor. The Np-fraction of minor actinides extracted from transuranic radioactive waste is proposed to be used as the starting material. The irradiation device with NpO2 fuel elements is installed at the reactor core center. The NpO2 fuel lattice pitch is varied and the irradiation device is surrounded by a heavy moderator layer to create the best possible spectral conditions for large-scale production (~ 3 kg/year) of conditioned plutonium with the required isotopic composition (not less than 85% of 238Pu and not more than 2 ppm of 236Pu). Plutonium with such isotopic composition can be used as the thermal source in thermoelectric radioisotope generators and in cardiac pacemakers. It has been demonstrated that the estimated scale of the 238Pu production in a VVER-type power reactor exceeds considerably the existing scale of its production in research reactors.
  • Публикация
    Открытый доступ
    Application of small perturbation theory for assessing variations of prompt neutron lifetime in a lead-cooled fast reactor
    (2023) Шмелев, А. Н.; Куликов, Геннадий Генрихович; Куликов, Евгений Геннадьевич; Апсэ, Владимир Александрович; Apse, V. A.; Kulikov, G. G.; Kulikov, E. G.
    The paper considers the applicability of small perturbation theory to assessing the variations of the prompt neutron lifetime caused by variations in the isotope composition of a lead-cooled fast reactor. The generalized small perturbation theory formulas have been developed to calculate derivatives of the prompt neutron lifetime regarded as a bilinear neutron flux and neutron worth ratio. A numerical algorithm has been proposed for the step-by-step application of the small perturbation theory formulas to assess the prompt neutron lifetime variations caused by a major perturbation in the reactor isotope composition, e.g. by the complete change of the material used earlier as the neutron reflector. The advantage of the proposed approach has been shown which consists in that it is basically possible to determine the role of different neutron reactions, isotopes and energy groups in and their contributions to the total prompt neutron lifetime variation caused by major changes in the reactor isotope composition.
  • Публикация
    Только метаданные
    Safety of a fast reactor with a reflector containing a moderator with heavy atomic weight and weak neutron absorption БЕЗОПАСНОСТЬ БЫСТРОГО РЕАКТОРА С ОТРАЖАТЕЛЕМ, СОДЕРЖАЩИМ ЗАМЕДЛИТЕЛЬ С БОЛЬШИМ АТОМНЫМ ВЕСОМ И МАЛЫМ ПОГЛОЩЕНИЕМ НЕИТРОНОВ
    (2019) Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.; Куликов, Геннадий Генрихович; Апсэ, Владимир Александрович; Куликов, Евгений Геннадьевич
    © 2019 Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University 'MEPhI'. All rights reserved.The purpose of the study is to justify the possibility of improving the safety of fast reactors by surrounding their cores with reflectors made of material with special neutron#physical properties. Such properties of the 208Pb lead isotope as heavy atomic weight, small absorption cross section, and high inelastic scattering threshold lead to some peculiarities in neutron kinetics of the fast reactor with a 208Pb reflector, which can significantly improve the reactor safety. The reflector will also make it possible to generate additional delayed neutrons, which are characterized by «dead» time. This will increase the resistibility of the fission chain reaction to reactivity jumps and exclude prompt supercriticality. Note that the additional delayed neutrons can be generated by the reactor designers. The relevance of the study is that the generation of additional delayed neutrons in the reflector will make it possible to reduce the consequences of a reactivity accident even if the reactivity introduced exceeds the effective fraction of delayed neutrons. At the same time, the role of the fraction of delayed neutrons as the maximum permissible reactivity for reactor safety is depreciated. The scientific novelty of the study is that the problem of the formation of additional neutrons, which in their properties are close to traditional delayed neutrons, has not been posed so far. The authors propose a new method for improving the safety of fast reactors by replenishing the fraction of delayed neutrons due to the time delay of prompt neutrons during their transfer in the reflector. To implement the considered advantages, the following combination is acceptable: lead enriched by 208Pb is used as a neutron reflector while natural lead or other material (sodium, etc.) is used as a coolant in the reactor core.
  • Публикация
    Только метаданные
    The knowledge preservation problem in the nuclear industry and the role of Web-based tools in its solution
    (2019) Geraskin, N. I.; Kulikov, E. G.; Glebov, V. B.; Гераскин, Николай Иванович; Куликов, Евгений Геннадьевич; Глебов, Василий Борисович
    © The Author(s) 2019.This case study analyses an application of distance training in the practice of nuclear knowledge preservation. The purpose of the research is to evaluate the potential of distance training in solving the problem of knowledge preservation in the nuclear industry. Thirty specialists from different European countries participated in the pilot training experiments. It was found that the efficacy of distance training depends directly on the convenience and ease of the knowledge transmission process, the possibility for the trainees to combine training with their professional activities, the ability to work independently and a conscious desire on the part of trainees to improve their professional competencies. The study included a comprehensive evaluation of the distance training platform Cyber Learning Platform for Network Education and Training (CLP4NET) in the context of nuclear knowledge preservation. It was found that CLP4NET provided a friendly interface, was relatively easy to use and allowed an extensive application of interactive data representation forms and ample communication between training participants.